Is FLT3 Internal Tandem Duplication an Unfavorable Risk Factor for High Risk Children with Acute Myeloid Leukemia? - Polish Experience
DOI:
https://doi.org/10.6000/1929-2279.2013.02.04.3Keywords:
FLT3/ITD mutation, acute myeloid leukemia, children, treatment result, high risk group.Abstract
According to the AML-BFM 2004 Interim, a treatment protocol used in Poland since 2005, presence of FLT3 internal tandem duplication (FLT3/ITD) qualifies a patient with acute myeloid leukemia (AML) to a high-risk group (HRG). The present study was aimed to identify the prevalence of FLT3/ITD in children with AML in Poland and to evaluate its prognostic significance in the HRG patients. Out of 291 children with de novo AML treated in 14 Polish centers between January 2006 and December 2012, samples from 174 patients were available for FLT3/ITD analysis. Among study patients 108 children (61.7%) were qualified to HRG. Genomic DNA samples from bone marrow were tested for identification of FLT3/ITD mutation by PCR amplification of exon 14 and 15 of FLT3 gene. Clinical features and treatment outcome in patients with and without FLT3/ITD were analyzed in the study. The FLT3/ITD was found in 14 (12.9%) of 108 HRG children. There were no significant differences between children with and without FLT3/ITD in age and FAB distribution. The white blood cells count in peripheral blood at diagnosis was significantly higher (p <0.01) in the children with FLT3/ITD. Over 5-year overall survival rate for FLT3/ITD positive children was worse (42.4%) comparing to FLT3/ITD negative children (58.9%), but the statistical difference was not significant. However, over 5-year survivals free from treatment failures were similar. The FLT3/ITD rate (12.9%) observed in the study corresponded to the published data. There was no significant impact of FLT3/ITD mutation on survival rates, although further studies are needed on this subject.
References
Varidman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937-51. http://dx.doi.org/10.1182/blood-2009-03-209262
Kaspers GJL. Pediatric acute myeloid leukemia. Expert Rev Anticancer Ther 2012; 12: 405-13. http://dx.doi.org/10.1586/era.12.1
Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood 2012; 120: 3187-205. http://dx.doi.org/10.1182/blood-2012-03-362608
Rubnitz JE, Inaba H. Childhood acute myeloid leukemia. Br J Haematol 2012; 159: 259-87. http://dx.doi.org/10.1111/bjh.12040
Balwierz W, Pawinska-Wasikowska K, Klekawka T, et al. Development of treatment and clinical results in childhood acute myeloid leukemia in Poland. Memo 2013; 6:54-62. http://dx.doi.org/10.1007/s12254-012-0061-9
Hatzimichael E, Georgiou G, Benetatos L, et al. Gene mutations and molecularly targeted therapies in acute myeloid leukemia. Am J Blood Res 2013; 3: 29-51.
Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognosis significance of FLT3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97: 89-94. http://dx.doi.org/10.1182/blood.V97.1.89
Meshinchi S, Alonzo TA, Stirewalt DL, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood 2006; 108: 3654-61. http://dx.doi.org/10.1182/blood-2006-03-009233
Assem MM, Noshy MM, Elsayed GM, et al. FLT3 internal tandem duplication and JAK2 V617F mutations in de novo acute myelogenous leukemia: relation with induction of chemotherapy and overall survival. Life Sci J 2012; 9: 1053-60.
Dohner H, Gaidzik VI. Impact of genetic features on treatment decisions in AML. Hematology Am Soc Hematol Educ Program 2011; 1: 36-42. http://dx.doi.org/10.1182/asheducation-2011.1.36
Konodo M, Horibe K, Takahashi Y, et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 1999; 33: 525-29. http://dx.doi.org/10.1002/(SICI)1096-911X(199912)33:6<525::AID-MPO1>3.0.CO;2-8
Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12. Blood 2001; 98: 1752-59. http://dx.doi.org/10.1182/blood.V98.6.1752
Zwaan CM, Meshinchi S, Radich JP, et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 2003; 102: 2387-94. http://dx.doi.org/10.1182/blood-2002-12-3627
Yanada M, Matuso K, Suzuki T, Kiyoi H, Naoe T. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 2005; 19: 1345-49. http://dx.doi.org/10.1038/sj.leu.2403838
Shimada A, Taki T, Koga D, et al. High WT1 mRNA expression after induction chemotherapy and FLT3-ITD have prognostic impact in pediatric acute myeloid leukemia: a study of the Japanese Childhood AML Cooperative Study Group. Int J Hematol 2012; 96: 469-76. http://dx.doi.org/10.1007/s12185-012-1163-1
Balgobind BV, Hollink HIM, Arentsen-Peters STCJM, et al. Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica 2011; 96: 1478-87. http://dx.doi.org/10.3324/haematol.2010.038976
Schneider F, Hoster E, Schneider S, et al. Age-dependent frequencies of NMP1 mutations and FLT3-ITD in patients with normal karyotype AML (NK-AML). Ann Hematol 2012; 91: 9-18. http://dx.doi.org/10.1007/s00277-011-1280-6
Thol F, Kolking B, Damm F, et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromosomes Cancer 2012; 51: 689-95. http://dx.doi.org/10.1002/gcc.21955
Pigazzi M, Manara E, Bisio V, et al. Screening of novel genetic aberrations in pediatric acute myeloid leukemia: a report from the AIEOP AML-2002 study group. Blood 2012; 120: 3860-62. http://dx.doi.org/10.1182/blood-2012-09-454454
de Jonge HJM, Valk PJM, de Bont ESJM, et al. Prognostic impact of white blood cell count in intermediate risk acute myeloid leukemia: relevance of mutated NPM1 and FLT3-ITD. Haematologica 2011; 96: 1310-17. http://dx.doi.org/10.3324/haematol.2011.040592
Kutny MA, Moser BK, Laumann K, et al. FLT3 mutation status is a predictor of early death in pediatric acute promyelocytic leukemia: a report from the Children's Oncology Group. Pediatr Blood Cancer 2012; 59: 662-667. http://dx.doi.org/10.1002/pbc.24122
Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326-35. http://dx.doi.org/10.1182/blood.V99.12.4326
Lacayo NJ, Meshinchi S, Kinnunen P, et al. Gene expression profiles at diagnosis in de novo children AML patients identify FLT3 mutations with good clinical outcomes. Blood 2004; 104: 2646-54. http://dx.doi.org/10.1182/blood-2003-12-4449
Stirewalt DL, Kopecky KJ, Meshinchi S, et al. Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood 2006; 107: 3724-26. http://dx.doi.org/10.1182/blood-2005-08-3453
Buccisano F, Maurillo L, del Principe MI, et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 2012; 119: 332-41. http://dx.doi.org/10.1182/blood-2011-08-363291
Watt TC, Cooper T. Sorafenib as treatment of relapsed or refractory pediatric acute myelogenous leukemia. Pediatr Blood Cancer 2012; 59: 756-57. http://dx.doi.org/10.1002/pbc.23394
Man CH, Fung TK, Ho C, et al. Sorafenib treatment of FLT3-ITD(+) acute myeloid leukemia: favourable initial outcome and mechanisms of subsequent nonresposiveness associated with the emergence of a D835 mutation. Blood 2012; 119: 5133-43. http://dx.doi.org/10.1182/blood-2011-06-363960
Levis M, Ravandi F, Wang ES, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 2011; 117: 3294-301. http://dx.doi.org/10.1182/blood-2010-08-301796
Stone RM, Fisher T, Paquette R, et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia 2012; 26: 2061-68. http://dx.doi.org/10.1038/leu.2012.115
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Tatiana I. Bulycheva, Svetlana A. Mayakova, Simon V. Skurkovich , Disease-Free Remission Exceeding 37 Years in Patients Treated as Children for Acute Leukemia (AL) with Immunotherapy Using Viable (Cryopreserved) Allogeneic Leukemic Cells Pages 254-26 , Journal of Cancer Research Updates: Vol. 2 No. 4 (2013)
- Ciro Comparetto, Franco Borruto, Molecular Technologies in Gynecologic Oncology , Journal of Cancer Research Updates: Vol. 4 No. 4 (2015)
- Dan-Ping Huang, Yi-Jun Chen, Jie-Si Luo, Shao-Qian Chen, Jing Cheng, Yu Li, Cong Liang, Li-Na Wang, Zhong Fan, Xiao-Li Zhang, Xue-Qun Luo, Li-Bin Huang, Yan-Lai Tang, PCR- Negative Atypical PML-RARA Rearrangement in Pediatric Acute Promyelocytic Leukemia , Journal of Cancer Research Updates: Vol. 10 (2021)
- Jingfang Yao, Mengjie Zhao, Jiangyun Wang, Liuya Wei, Advances in New Targets for Differentiation Therapy of Acute Myeloid Leukemia , Journal of Cancer Research Updates: Vol. 9 No. 1 (2020)
- Atish Patel, Hui Zhang, Deshen Wang, Dong-Hua Yang, Sanjay Dholakiya, Zhe-Sheng Chen1, Pharmacotherapeutic Options for Philadelphia Chromosome-Positive CML , Journal of Cancer Research Updates: Vol. 7 No. 2 (2018)
- Jiaqiong Wang, Robert Carroll, Editorial: PET/CT for Cancer Diagnosis, Staging and Prognosis , Journal of Cancer Research Updates: Vol. 5 No. 1 (2016)
- Fazilet Erozgen, Hüseyin Kadioglu, Mehmet Celal Kizilkaya, Muzaffer Akinci, Ahmet Kocakusak, Adnan Hut, Mehmet Gülen, Ömer Güngörür, Rafet Kaplan, Gastrointestinal Stromal Tumors Presenting as Surgical Emergencies: A Six-Patient Case Series , Journal of Cancer Research Updates: Vol. 2 No. 4 (2013)
- J.L. Layton, J.F. Renzulli II, A.M. Taber, D. Golijanin, J.E. Collins, H.H. Safran, A.E. Mega, Weekly Neoadjuvant Ixabepilone on Surgical Feasibility and Clinical Outcomes in Locally Advanced High-Risk Prostate Cancer: A Phase II Clinical Trial , Journal of Cancer Research Updates: Vol. 2 No. 4 (2013)
- Mario M. Soldevilla, Susana Inogés, Ascensión López-Díaz de Cerio, Fernando Pastor, Helena Villanueva, Maurizio Bendandi, Biological Efficacy of a Dendritic Cell-Based Vaccine in a Patient with Metastatic Colorectal Cancer , Journal of Cancer Research Updates: Vol. 1 No. 1 (2012)
- Joseph V. Pergolizzi Jr., Robert B. Raffa, Emilio Esteban Gonzalez, Jo Ann LeQuang, A Guide for Cancer Pain Management in Latin America , Journal of Cancer Research Updates: Vol. 6 No. 4 (2017)
You may also start an advanced similarity search for this article.