Targeting Snail1 by CRISPR/Cas9 System Inhibits the Proliferation and Migration of Human Gastric Cancer Cells
DOI:
https://doi.org/10.30683/1929-2279.2023.12.5Keywords:
Gastric cancer, Snail1, CRISPR/Cas9, gene editing, cancer proliferation, cancer migrationAbstract
The zinc-finger transcriptional repressor Snail1 affects cancer progression by controlling the epithelial cell-mesenchymal transition. The RNA-guided clustered regularly interspaced short palindromic (CRISPR) with a CRISPR-associated nuclease 9 (Cas9) nuclease system has been extensively used for gene editing. Here, we used two distinct sgRNAs to successfully target Snail1 in the gastric cancer cell line MGC803 with the CRISPR/Cas9 system. Furthermore, we discovered that Snail1 knockout reduced the proliferation and migration of MGC803 cells.
References
Stemmler MP, Eccles RL, Brabletz S, Brabletz T. Non-redundant functions of EMT transcription factors. Nat Cell Biol 2019; 21(1): 102-112. https://doi.org/10.1038/s41556-018-0196-y DOI: https://doi.org/10.1038/s41556-018-0196-y
Goossens S, Vandamme N, Van Vlierberghe P, Berx G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer 2017; 1868(2): 584-591. https://doi.org/10.1016/j.bbcan.2017.06.006 DOI: https://doi.org/10.1016/j.bbcan.2017.06.006
Hwang WL, Yang MH, Tsai ML, Lan HY, Su SH, Chang SC, Teng HW, Yang SH, Lan YT, Chiou SH, Wang HW. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology 2011; 141(1): 279-91, 291.e1-5. https://doi.org/10.1053/j.gastro.2011.04.008 DOI: https://doi.org/10.1053/j.gastro.2011.04.008
Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2(2): 84-9. https://doi.org/10.1038/35000034 DOI: https://doi.org/10.1038/35000034
Qiao L, Gao H, Zhang T, Jing L, Xiao C, Xiao Y, Luo N, Zhu H, Meng W, Xu H, Mo X. Snail modulates the assembly of fibronectin via α5 integrin for myocardial migration in zebrafish embryos. Sci Rep 2014; 4: 4470 https://doi.org/10.1038/srep04470 DOI: https://doi.org/10.1038/srep04470
Kajita M, McClinic KN, Wade PA. Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 2004; 24(17): 7559-66 https://doi.org/10.1128/mcb.24.17.7559-7566.2004 DOI: https://doi.org/10.1128/MCB.24.17.7559-7566.2004
Ikenouchi J, Matsuda M, Furuse M, Tsukita S. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 2003; 116(Pt 10): 1959-67. https://doi.org/10.1242/jcs.00389 DOI: https://doi.org/10.1242/jcs.00389
Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3(3): 155-66, https://doi.org/10.1038/nrm757 DOI: https://doi.org/10.1038/nrm757
Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI, Evers BM, Zhou BP. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 2010; 29(11): 1803-16. https://doi.org/10.1038/emboj.2010.63 DOI: https://doi.org/10.1038/emboj.2010.63
Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7(6): 415-28. https://doi.org/10.1038/nrc2131 DOI: https://doi.org/10.1038/nrc2131
Wang H, La Russa M, Qi LS. CRISPR/Cas9 in Genome Editing and Beyond. Annu Rev Biochem 2016; 85: 227-64. https://doi.org/10.1146/annurev-biochem-060815-014607 DOI: https://doi.org/10.1146/annurev-biochem-060815-014607
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343(6166): 84-87. https://doi.org/10.1126/science.1247005 DOI: https://doi.org/10.1126/science.1247005
Yuasa Y. Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer 2003; 3(8): 592-600. https://doi.org/10.1038/nrc1141 DOI: https://doi.org/10.1038/nrc1141
He H, Chen W, Wang X, Wang C, Liu F, Shen Z, Xu J, Gu J, Sun Y. Snail is an independent prognostic predictor for progression and patient survival of gastric cancer. Cancer Sci 2012; 103(7): 1296-303. https://doi.org/10.1111/j.1349-7006.2012.02295.x DOI: https://doi.org/10.1111/j.1349-7006.2012.02295.x
Kato Y, Yashiro M, Noda S, Tendo M, Kashiwagi S, Doi Y, Nishii T, Matsuoka J, Fuyuhiro Y, Shinto O, Sawada T, Ohira M, Hirakawa K. Establishment and characterization of a new hypoxia-resistant cancer cell line, OCUM-12/Hypo, derived from a scirrhous gastric carcinoma. Br J Cancer 2010; 102(5): 898-907. https://doi.org/10.1038/sj.bjc.6605543 DOI: https://doi.org/10.1038/sj.bjc.6605543
Ryu HS, Park DJ, Kim HH, Kim WH, Lee HS. Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer. Hum Pathol 2012; 43(4): 520-8. https://doi.org/10.1016/j.humpath.2011.07.003 DOI: https://doi.org/10.1016/j.humpath.2011.07.003
Koh JS, Joo MK, Park JJ, Yoo HS, Choi BI, Lee BJ, Chun HJ, Lee SW. Inhibition of STAT3 in gastric cancer: role of pantoprazole as SHP-1 inducer. Cell Biosci 2018; 8: 50. https://doi.org/10.1186/s13578-018-0248-9 DOI: https://doi.org/10.1186/s13578-018-0248-9
Shin NR, Jeong EH, Choi CI, Moon HJ, Kwon CH, Chu IS, Kim GH, Jeon TY, Kim DH, Lee JH, Park DY. Overexpression of Snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. BMC Cancer 2012; 12: 521. https://doi.org/10.1186/1471-2407-12-521 DOI: https://doi.org/10.1186/1471-2407-12-521
Mirzaei S, Gholami MH, Aghdaei HA, Hashemi M, Parivar K, Karamian A, Zarrabi A, Ashrafizadeh M, Lu J. Exosome-mediated miR-200a delivery into TGF-β-treated AGS cells abolished epithelial-mesenchymal transition with normalization of ZEB1, vimentin and Snail1 expression. Environ Res 2023; 116115. https://doi.org/10.1016/j.envres.2023.116115 DOI: https://doi.org/10.1016/j.envres.2023.116115
Haraguchi M, Sato M, Ozawa M. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells. PLoS One 2015; 10(7): e0132260. https://doi.org/10.1371/journal.pone.0132260 DOI: https://doi.org/10.1371/journal.pone.0132260
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.