Quercetin and Mercury In Vitro Anti-Proliferative Effect in Human Astrocytoma Cells

Quercetin and Mercury In Vitro Anti-Proliferative Effect in Human Astrocytoma Cells

Authors

  • Nada A. Al-Hasawi Department of Pharmaceutical Chemistry, Collage of Pharmacy, Kuwait University, Kuwait
  • Ladislav Novotny Institute of Laboratory Methods, St. Elizabeth University, Slovakia https://orcid.org/0000-0003-1031-7549

DOI:

https://doi.org/10.30683/1929-2279.2023.12.4

Keywords:

Quercetin, Mercury, Cadmium, Astrocytoma, 1321N1 Cell line, MTT, synergistic anti-proliferation

Abstract

Mercury (Hg) is a toxic heavy metal to which we are exposed in everyday life. Exposure to environmental Hg may lead to toxicity in the human body associated with major health issues. Quercetin (QE) on the other hand, is a natural flavonoid widely distributed in higher plants and is part of the human diet. Several studies demonstrated the therapeutic and protective effects of QE against multiple diseases and health problems. The aim of this study is to investigate the effect of QE and Hg on the proliferation of human astrocytoma 1321N1 cell line. This study is a continuation of our previous work in which we investigated cadmium (Cd) instead of Hg. The 1321N1 cells were either treated with Hg alone, or pre- or co-treated with QE. Cell viabilities were determined by MTT assay. Results indicated that simultaneous treatment of the cells with 200 µM and 16 µM Hg for 48 hrs significantly reduced cell viability to 11.7 ± 3.1 % compared to the DMSO vehicle-treated cells. Other experiments of QE pre-treatment followed by exposure to Hg alone or with QE indicated a significant ability to reduce proliferation compared to treatment with Hg alone. In conclusion, our study suggested a synergistic anti-proliferative interaction of Hg and QE in malignantly transformed cells. However, this effect is higher when combining Cd and QE as indicated in our previous work. These data may be beneficial in exploiting the biological effect of QE for treating the malignantly transformed cells.

References

Yuan Y, Ma S, Qi Y, Wei X, Cai H, Dong L, et al. Quercetin inhibited cadmium-induced autophagy in the mouse kidney via inhibition of oxidative stress. J Toxicol Pathol 2016; 29(4): 247-52. https://doi.org/10.1293/tox.2016-0026 DOI: https://doi.org/10.1293/tox.2016-0026

Harnly JM, Doherty RF, Beecher GR, Holden JM, Haytowitz DB, Bhagwat S, et al. Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem 2006; 54(26): 9966-77. https://doi.org/10.1021/jf061478a DOI: https://doi.org/10.1021/jf061478a

D'Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015; 106: 256-71. https://doi.org/10.1016/j.fitote.2015.09.018 DOI: https://doi.org/10.1016/j.fitote.2015.09.018

Al-Hasawi NA, Amine SA, Novotny L. The In Vitro Anti-Proliferative Interaction of Flavonoid Quercetin and Toxic Metal Cadmium in the 1321N1 Human Astrocytoma Cell Line. Sci Pharm 2018; 86(3). https://doi.org/10.3390/scipharm86030036 DOI: https://doi.org/10.3390/scipharm86030036

Bruning A. Inhibition of mTOR signaling by quercetin in cancer treatment and prevention. Anticancer Agents Med Chem 2013; 13(7): 1025-31. https://doi.org/10.2174/18715206113139990114 DOI: https://doi.org/10.2174/18715206113139990114

Sak K. Site-specific anticancer effects of dietary flavonoid quercetin. Nutr Cancer 2014; 66(2): 177-93. https://doi.org/10.1080/01635581.2014.864418 DOI: https://doi.org/10.1080/01635581.2014.864418

Russo GL, Russo M, Spagnuolo C, Tedesco I, Bilotto S, Iannitti R, et al. Quercetin: a pleiotropic kinase inhibitor against cancer. Cancer Treat Res 2014; 159: 185-205. https://doi.org/10.1007/978-3-642-38007-5_11 DOI: https://doi.org/10.1007/978-3-642-38007-5_11

Taylor MA, Khathayer F, Ray SK. Quercetin and Sodium Butyrate Synergistically Increase Apoptosis in Rat C6 and Human T98G Glioblastoma Cells Through Inhibition of Autophagy. Neurochem Res 2019; 44(7): 1715-25. https://doi.org/10.1007/s11064-019-02802-8 DOI: https://doi.org/10.1007/s11064-019-02802-8

Zhai K, Mazurakova A, Koklesova L, Kubatka P, Busselberg D. Flavonoids Synergistically Enhance the Anti-Glioblastoma Effects of Chemotherapeutic Drugs. Biomolecules 2021; 11(12). https://doi.org/10.3390/biom11121841 DOI: https://doi.org/10.3390/biom11121841

Bhandarkar S, Prabhakar B, Shende P. Quercetin-loaded platelets as a potential targeted therapy for glioblastoma multiforme cell line U373-MG. Biotechnol J 2021; 16(12): e2100271. https://doi.org/10.1002/biot.202100271 DOI: https://doi.org/10.1002/biot.202100271

Mumtaz SM, Bhardwaj G, Goswami S, Tonk RK, Goyal RK, Abu-Izneid T, et al. Management of Glioblastoma Multiforme by Phytochemicals: Applications of Nanoparticle-Based Targeted Drug Delivery System. Curr Drug Targets 2021; 22(4): 429-42. https://doi.org/10.2174/1389450121666200727115454 DOI: https://doi.org/10.2174/1389450121666200727115454

CRC Handbook of chemistry and physics. 86th ed. Lide DR, editor. Boca Raton: CRC Press; 2005.

Pacyna EGP, JM. Steenhuisen F. Wilson S. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment 2006; 40(22): 4048-63. https://doi.org/10.1016/j.atmosenv.2006.03.041 DOI: https://doi.org/10.1016/j.atmosenv.2006.03.041

Talhout R, Schulz T, Florek E, van Benthem J, Wester P, Opperhuizen A. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health 2011; 8(2): 613-28. https://doi.org/10.3390/ijerph8020613 DOI: https://doi.org/10.3390/ijerph8020613

Echeverria D, Woods JS, Heyer NJ, Martin MD, Rohlman DS, Farin FM, et al. The association between serotonin transporter gene promotor polymorphism (5-HTTLPR) and elemental mercury exposure on mood and behavior in humans. J Toxicol Environ Health A 2010; 73(15): 1003-20. https://doi.org/10.1080/15287390903566591 DOI: https://doi.org/10.1080/15287390903566591

Liang YX, Sun RK, Sun Y, Chen ZQ, Li LH. Psychological effects of low exposure to mercury vapor: application of a computer-administered neurobehavioral evaluation system. Environ Res 1993; 60(2): 320-7. https://doi.org/10.1006/enrs.1993.1040 DOI: https://doi.org/10.1006/enrs.1993.1040

McFarland RB, Reigel H. Chronic mercury poisoning from a single brief exposure. J Occup Med 1978; 20(8): 532-4. https://doi.org/10.1097/00043764-197808000-00003 DOI: https://doi.org/10.1097/00043764-197808000-00003

Bonotto DM, Wijesiri B, Vergotti M, da Silveira EG, Goonetilleke A. Assessing mercury pollution in Amazon River tributaries using a Bayesian Network approach. Ecotoxicol Environ Saf 2018; 166: 354-8. https://doi.org/10.1016/j.ecoenv.2018.09.099 DOI: https://doi.org/10.1016/j.ecoenv.2018.09.099

Kimakova T, Kuzmova L, Nevolna Z, Bencko V. Fish and fish products as risk factors of mercury exposure. Ann Agric Environ Med 2018; 25(3): 488-93. https://doi.org/10.26444/aaem/84934 DOI: https://doi.org/10.26444/aaem/84934

Lu Z, Ma Y, Gao L, Li Y, Li Q, Qiang M. Urine mercury levels correlate with DNA methylation of imprinting gene H19 in the sperm of reproductive-aged men. PLoS One 2018; 13(4): e0196314. https://doi.org/10.1371/journal.pone.0196314 DOI: https://doi.org/10.1371/journal.pone.0196314

Gaudet HM, Christensen E, Conn B, Morrow S, Cressey L, Benoit J. Methylmercury promotes breast cancer cell proliferation. Toxicol Rep 2018; 5: 579-84. https://doi.org/10.1016/j.toxrep.2018.05.002 DOI: https://doi.org/10.1016/j.toxrep.2018.05.002

Zefferino R, Piccoli C, Ricciardi N, Scrima R, Capitanio N. Possible Mechanisms of Mercury Toxicity and Cancer Promotion: Involvement of Gap Junction Intercellular Communications and Inflammatory Cytokines. Oxid Med Cell Longev 2017; 2017: 7028583. https://doi.org/10.1155/2017/7028583 DOI: https://doi.org/10.1155/2017/7028583

Zefferino R, Piccaluga S, Lasalvia M, G DA, Margaglione M, Ambrosi L. Role of tumour necrosis factor alpha and interleukin 1 beta in promoter effect induced by mercury in human keratinocytes. Int J Immunopathol Pharmacol 2006; 19(4 Suppl): 15-20. https://www.ncbi.nlm.nih.gov/pubmed/17291401

Zhang X, Wang Y, Zhao Y, Chen X. Experimental study on the estrogen-like effect of mercuric chloride. Biometals 2008; 21(2): 143-50. https://doi.org/10.1007/s10534-007-9102-y DOI: https://doi.org/10.1007/s10534-007-9102-y

Sutton DJ, Tchounwou PB. Mercury-induced externalization of phosphatidylserine and caspase 3 activation in human liver carcinoma (HepG2) cells. Int J Environ Res Public Health 2006; 3(1): 38-42. https://doi.org/10.3390/ijerph2006030005 DOI: https://doi.org/10.3390/ijerph2006030005

Opitz H, Schweinsberg F, Grossmann T, Wendt-Gallitelli MF, Meyermann R. Demonstration of mercury in the human brain and other organs 17 years after metallic mercury exposure. Clin Neuropathol. 1996; 15(3): 139-44. https://www.ncbi.nlm.nih.gov/pubmed/8793247

Mailloux RJ, Yumvihoze E, Chan HM. Superoxide anion radical (O2(-)) degrades methylmercury to inorganic mercury in human astrocytoma cell line (CCF-STTG1). Chem Biol Interact 2015; 239: 46-55. https://doi.org/10.1016/j.cbi.2015.06.028 DOI: https://doi.org/10.1016/j.cbi.2015.06.028

Robitaille S, Mailloux RJ, Chan HM. Methylmercury alters glutathione homeostasis by inhibiting glutaredoxin 1 and enhancing glutathione biosynthesis in cultured human astrocytoma cells. Toxicol Lett 2016; 256: 1-10. https://doi.org/10.1016/j.toxlet.2016.05.013 DOI: https://doi.org/10.1016/j.toxlet.2016.05.013

Ranganathan S, Halagowder D, Sivasithambaram ND. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells. PLoS One 2015; 10(10): e0141370. https://doi.org/10.1371/journal.pone.0141370 DOI: https://doi.org/10.1371/journal.pone.0141370

Okoko T, Ere D. Some bioactive potentials of two biflavanols isolated from Garcinia kola on cadmium-induced alterations of raw U937 cells and U937-derived macrophages. Asian Pac J Trop Med 2013; 6(1): 43-8. https://doi.org/10.1016/S1995-7645(12)60198-9 DOI: https://doi.org/10.1016/S1995-7645(12)60198-9

Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987; 47(4): 936-42. https://www.ncbi.nlm.nih.gov/pubmed/3802100

Martins Rde P, Braga Hde C, da Silva AP, Dalmarco JB, de Bem AF, dos Santos AR, et al. Synergistic neurotoxicity induced by methylmercury and quercetin in mice. Food Chem Toxicol 2009; 47(3): 645-9. https://doi.org/10.1016/j.fct.2008.12.020 DOI: https://doi.org/10.1016/j.fct.2008.12.020

Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, et al. Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicol 2007; 20(12): 1919-26. https://doi.org/10.1021/tx7002323 DOI: https://doi.org/10.1021/tx7002323

Barcelos GR, Angeli JP, Serpeloni JM, Grotto D, Rocha BA, Bastos JK, et al. Quercetin protects human-derived liver cells against mercury-induced DNA-damage and alterations of the redox status. Mutat Res 2011; 726(2): 109-15. https://doi.org/10.1016/j.mrgentox.2011.05.011 DOI: https://doi.org/10.1016/j.mrgentox.2011.05.011

Alazoumi KKM, Ahmed A, Alamery SF, Shamsi A, Ahmad B, Islam A, et al. Effect of Antioxidants on Heavy Metals Induced Conformational Alteration of Cytochrome C and Myoglobin. Protein Pept Lett 2021; 28(1): 31-42. https://doi.org/10.2174/0929866527666200610134442 DOI: https://doi.org/10.2174/0929866527666200610134442

Wang Y, Zang J, Wang C, Zhang X, Zhao G. Structural Insights for the Stronger Ability of Shrimp Ferritin to Coordinate with Heavy Metal Ions as Compared to Human H-Chain Ferritin. Int J Mol Sci 2021; 22(15). https://doi.org/10.3390/ijms22157859 DOI: https://doi.org/10.3390/ijms22157859

Downloads

Published

2023-03-29

How to Cite

Al-Hasawi, N. A. ., & Novotny, L. (2023). Quercetin and Mercury In Vitro Anti-Proliferative Effect in Human Astrocytoma Cells. Journal of Cancer Research Updates, 12, 16–27. https://doi.org/10.30683/1929-2279.2023.12.4

Issue

Section

Articles
Loading...