Sigma Antagonists for Treatment of Neuropathic Pain Syndromes in Cancer Patients: A Narrative Review
DOI:
https://doi.org/10.30683/1929-2279.2022.11.10Keywords:
Cancer-related neuropathic pain, chemotherapy-induced peripheral neuropathy, sigma 1 receptor, sigma 2 receptor, sigma receptorAbstract
Almost 40% of cancer patients have neuropathic pain or mixed pain with a neuropathic component, which can be intense, debilitating, and challenging to treat. New studies on sigma receptors show these enigmatic ligand-binding protein chaperones may be helpful drug targets for new pharmacologic options to reduce many types of neuropathies, including chemotherapy-induced peripheral neuropathy (CIPN) and other cancer-related neuropathic pain syndromes. Our objective was to review the literature, including preclinical findings, in support of sigma-1 receptor (S1R) antagonists in reducing neuropathic pain and sigma-2 receptor (S2R) agonists for neuroprotection. The mechanisms behind these effects are not yet fully elucidated. The role of S1R antagonists in treating CIPN appears promising. In some cases, combination therapy of an opioid—which is a true analgesic—with a S1R antagonist, which is an anti-hyperalgesic and anti-allodynic agent, has been proposed. Of interest, but not well studied is whether or not S1R antagonists might be effective in treating CIPN in patients with pre-existing peripheral diabetic neuropathy. While neuropathic syndromes may occur with hematologic cancers, the role of S1R agonists may be effective. Sigma receptors are being actively studied now for a variety of conditions ranging from Alzheimer’s disease to Parkinson’s disease as well as neuropathic pain.
References
Yoon SY, Oh J. Neuropathic cancer pain: prevalence, pathophysiology, and management. Korean J Intern Med 2018; 33(6): 1058-69. https://doi.org/10.3904/kjim.2018.162 DOI: https://doi.org/10.3904/kjim.2018.162
Bennett MI, Rayment C, Hjermstad M, Aass N, Caraceni A, Kaasa S. Prevalence and aetiology of neuropathic pain in cancer patients: a systematic review. Pain 2012; 153(2): 359-65. https://doi.org/10.1016/j.pain.2011.10.028 DOI: https://doi.org/10.1016/j.pain.2011.10.028
Maurice T, Su TP. The pharmacology of sigma-1 receptors. Pharmacol Ther 2009; 124(2): 195-206. https://doi.org/10.1016/j.pharmthera.2009.07.001 DOI: https://doi.org/10.1016/j.pharmthera.2009.07.001
Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007; 131(3): 596-610. https://doi.org/10.1016/j.cell.2007.08.036 DOI: https://doi.org/10.1016/j.cell.2007.08.036
Hayashi T, Su T. The sigma receptor: evolution of the concept in neuropsychopharmacology. Curr Neuropharmacol 2005; 3(4): 267-80. https://doi.org/10.2174/157015905774322516 DOI: https://doi.org/10.2174/157015905774322516
Albayrak Y, Hashimoto K. Sigma-1 Receptor Agonists and Their Clinical Implications in Neuropsychiatric Disorders. Adv Exp Med Biol 2017; 964: 153-61. https://doi.org/10.1007/978-3-319-50174-1_11 DOI: https://doi.org/10.1007/978-3-319-50174-1_11
Soriani O, Rapetti-Mauss R. Sigma 1 Receptor and Ion Channel Dynamics in Cancer. Adv Exp Med Biol 2017; 964: 63-77. https://doi.org/10.1007/978-3-319-50174-1_6 DOI: https://doi.org/10.1007/978-3-319-50174-1_6
Sanchez-Fernandez C, Entrena JM, Baeyens JM, Cobos EJ. Sigma-1 Receptor Antagonists: A New Class of Neuromodulatory Analgesics. In: Smith SB, Su TP, editors. Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology 2017; 964: p. 109-32. https://doi.org/10.1007/978-3-319-50174-1_9 DOI: https://doi.org/10.1007/978-3-319-50174-1_9
Cuevas J, Rodriguez A, Behensky A, Katnik C. Afobazole modulates microglial function via activation of both sigma-1 and sigma-2 receptors. J Pharmacol Exp Ther 2011; 339(1): 161-72. https://doi.org/10.1124/jpet.111.182816 DOI: https://doi.org/10.1124/jpet.111.182816
Merlos M, Burgueño J, Portillo-Salido E, Plata-Salamán CR, Vela JM. Pharmacological Modulation of the Sigma 1 Receptor and the Treatment of Pain. Adv Exp Med Biol 2017; 964: 85-107. https://doi.org/10.1007/978-3-319-50174-1_8 DOI: https://doi.org/10.1007/978-3-319-50174-1_8
Song T, Zhao J, Ma X, Zhang Z, Jiang B, Yang Y. Role of sigma 1 receptor in high fat diet-induced peripheral neuropathy. Biol Chem 2017; 398(10): 1141-9. https://doi.org/10.1515/hsz-2017-0117 DOI: https://doi.org/10.1515/hsz-2017-0117
Bangaru ML, Weihrauch D, Tang Q-B, Zoga V, Hogan Q, Wu H-e. Sigma-1 receptor expression in sensory neurons and the effect of painful peripheral nerve injury. Molecular Pain 2013; 9(1): 47. https://doi.org/10.1186/1744-8069-9-47 DOI: https://doi.org/10.1186/1744-8069-9-47
Bruna J, Velasco R. Sigma-1 receptor: a new player in neuroprotection against chemotherapy-induced peripheral neuropathy. Neural Regen Res 2018; 13(5): 775-8. https://doi.org/10.4103/1673-5374.232459 DOI: https://doi.org/10.4103/1673-5374.232459
Su TP, Su TC, Nakamura Y, Tsai SY. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. Trends Pharmacol Sci 2016; 37(4): 262-78. https://doi.org/10.1016/j.tips.2016.01.003 DOI: https://doi.org/10.1016/j.tips.2016.01.003
Zhang Y, Shi Y, Qiao L, Sun Y, Ding W, Zhang H, et al. Sigma-1 receptor agonists provide neuroprotection against gp120 via a change in bcl-2 expression in mouse neuronal cultures. Brain Res 2012; 1431: 13-22. https://doi.org/10.1016/j.brainres.2011.10.053 DOI: https://doi.org/10.1016/j.brainres.2011.10.053
Tan F, Guio-Aguilar PL, Downes C, Zhang M, O'Donovan L, Callaway JK, et al. The σ 1 receptor agonist 4-PPBP elicits ERK1/2 phosphorylation in primary neurons: a possible mechanism of neuroprotective action. Neuropharmacology 2010; 59(6): 416-24. https://doi.org/10.1016/j.neuropharm.2010.05.014 DOI: https://doi.org/10.1016/j.neuropharm.2010.05.014
Saulite L, Vavers E, Zvejniece L, Dambrova M, Riekstina U. The Differentiation of Skin Mesenchymal Stem Cells Towards a Schwann Cell Phenotype: Impact of Sigma-1 Receptor Activation. Mol Neurobiol 2018; 55(4): 2840-50. https://doi.org/10.1007/s12035-017-0511-9 DOI: https://doi.org/10.1007/s12035-017-0511-9
Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, et al. Neuropathic pain. Nat Rev Dis Primers 2017; 3: 17002. https://doi.org/10.1038/nrdp.2017.2 DOI: https://doi.org/10.1038/nrdp.2017.2
Rayment C, Hjermstad MJ, Aass N, Kaasa S, Caraceni A, Strasser F, et al. Neuropathic cancer pain: prevalence, severity, analgesics and impact from the European Palliative Care Research Collaborative-Computerised Symptom Assessment study. Palliat Med 2013; 27(8): 714-21. https://doi.org/10.1177/0269216312464408 DOI: https://doi.org/10.1177/0269216312464408
Bravo-Caparrós I, Ruiz-Cantero MC, Perazzoli G, Cronin SJF, Vela JM, Hamed MF, et al. Sigma-1 receptors control neuropathic pain and macrophage infiltration into the dorsal root ganglion after peripheral nerve injury. Faseb j 2020; 34(4): 5951-66. https://doi.org/10.1096/fj.201901921R DOI: https://doi.org/10.1096/fj.201901921R
Johnson IP, Sears TA. Target-dependence of sensory neurons: an ultrastructural comparison of axotomised dorsal root ganglion neurons with allowed or denied reinnervation of peripheral targets. Neuroscience 2013; 228: 163-78. https://doi.org/10.1016/j.neuroscience.2012.10.015 DOI: https://doi.org/10.1016/j.neuroscience.2012.10.015
Laedermann CJ, Pertin M, Suter MR, Decosterd I. Voltage-gated sodium channel expression in mouse DRG after SNI leads to re-evaluation of projections of injured fibers. Mol Pain 2014; 10: 19. https://doi.org/10.1186/1744-8069-10-19 DOI: https://doi.org/10.1186/1744-8069-10-19
Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation. Science 2016; 354(6312): 572-7. https://doi.org/10.1126/science.aaf8924 DOI: https://doi.org/10.1126/science.aaf8924
Sánchez-Fernández C, Montilla-García Á, González-Cano R, Nieto FR, Romero L, Artacho-Cordón A, et al. Modulation of peripheral μ-opioid analgesia by σ1 receptors. J Pharmacol Exp Ther 2014; 348(1): 32-45. https://doi.org/10.1124/jpet.113.208272 DOI: https://doi.org/10.1124/jpet.113.208272
Nascimento D, Pozza DH, Castro-Lopes JM, Neto FL. Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats. Neurosignals 2011; 19(4): 210-21. https://doi.org/10.1159/000330195 DOI: https://doi.org/10.1159/000330195
Tomohisa M, Junpei O, Aki M, Masato H, Mika F, Kazumi Y, et al. Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain. Synapse 2015; 69(11): 526-32. https://doi.org/10.1002/syn.21844 DOI: https://doi.org/10.1002/syn.21844
Gris G, Cobos EJ, Zamanillo D, Portillo-Salido E. Sigma-1 receptor and inflammatory pain. Inflamm Res 2015; 64(6): 377-81. https://doi.org/10.1007/s00011-015-0819-8 DOI: https://doi.org/10.1007/s00011-015-0819-8
Edwards HL, Mulvey MR, Bennett MI. Cancer-Related Neuropathic Pain. Cancers (Basel) 2019; 11(3). https://doi.org/10.3390/cancers11030373 DOI: https://doi.org/10.3390/cancers11030373
van den Beuken-van Everdingen MHJ, van Kuijk SMJ, Janssen DJA, Joosten EAJ. Treatment of Pain in Cancer: Towards Personalised Medicine. Cancers (Basel) 2018; 10(12). https://doi.org/10.3390/cancers10120502 DOI: https://doi.org/10.3390/cancers10120502
Gwathmey KG. Plexus and peripheral nerve metastasis. Handb Clin Neurol 2018; 149: 257-79. https://doi.org/10.1016/B978-0-12-811161-1.00017-7 DOI: https://doi.org/10.1016/B978-0-12-811161-1.00017-7
Patel DK, Gwathmey KG. Neoplastic nerve lesions. Neurol Sci 2022; 43(5): 3019-38. https://doi.org/10.1007/s10072-022-05951-x DOI: https://doi.org/10.1007/s10072-022-05951-x
Zajączkowska R, Kocot-Kępska M, Leppert W, Wrzosek A, Mika J, Wordliczek J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2019; 20(6). https://doi.org/10.3390/ijms20061451 DOI: https://doi.org/10.3390/ijms20061451
Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy-induced peripheral neuropathy: A current review. Ann Neurol 2017; 81(6): 772-81. https://doi.org/10.1002/ana.24951 DOI: https://doi.org/10.1002/ana.24951
Cioroiu C, Weimer LH. Update on Chemotherapy-Induced Peripheral Neuropathy. Curr Neurol Neurosci Rep 2017; 17(6): 47. https://doi.org/10.1007/s11910-017-0757-7 DOI: https://doi.org/10.1007/s11910-017-0757-7
Chua KC, Kroetz DL. Genetic advances uncover mechanisms of chemotherapy-induced peripheral neuropathy. Clin Pharmacol Ther 2017; 101(4): 450-2. https://doi.org/10.1002/cpt.590 DOI: https://doi.org/10.1002/cpt.590
Nakagawa T, Kaneko S. Roles of Transient Receptor Potential Ankyrin 1 in Oxaliplatin-Induced Peripheral Neuropathy. Biol Pharm Bull 2017; 40(7): 947-53. https://doi.org/10.1248/bpb.b17-00243 DOI: https://doi.org/10.1248/bpb.b17-00243
Marcotti A, Fernández-Trillo J, González A, Vizcaíno-Escoto M, Ros-Arlanzón P, Romero L, et al. TRPA1 modulation by Sigma-1 receptor prevents oxaliplatin-induced painful peripheral neuropathy. Brain 2022. https://doi.org/10.1093/brain/awac273 DOI: https://doi.org/10.1093/brain/awac273
Nieto FR, Cendán CM, Sánchez-Fernández C, Cobos EJ, Entrena JM, Tejada MA, et al. Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J Pain 2012; 13(11): 1107-21. https://doi.org/10.1016/j.jpain.2012.08.006 DOI: https://doi.org/10.1016/j.jpain.2012.08.006
Nieto FR, Cendán CM, Cañizares FJ, Cubero MA, Vela JM, Fernández-Segura E, et al. Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Mol Pain 2014; 10: 11. https://doi.org/10.1186/1744-8069-10-11 DOI: https://doi.org/10.1186/1744-8069-10-11
Grothey A. Oxaliplatin-safety profile: neurotoxicity. Semin Oncol 2003; 30(4 Suppl 15): 5-13. https://doi.org/10.1016/S0093-7754(03)00399-3 DOI: https://doi.org/10.1016/S0093-7754(03)00399-3
Dorsey SG. Selective Blockade of the Sigma 1 Receptor Has Beneficial Effects on Both Acute and Chronic Oxaliplatin-Induced Peripheral Neuropathy. Neurotherapeutics 2018; 15(1): 176-7. https://doi.org/10.1007/s13311-017-0584-1 DOI: https://doi.org/10.1007/s13311-017-0584-1
Bruna J, Videla S, Argyriou AA, Velasco R, Villoria J, Santos C, et al. Efficacy of a Novel Sigma-1 Receptor Antagonist for Oxaliplatin-Induced Neuropathy: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Clinical Trial. Neurotherapeutics 2018; 15(1): 178-89. https://doi.org/10.1007/s13311-017-0572-5 DOI: https://doi.org/10.1007/s13311-017-0572-5
Zoccarato M, Grisold W, Grisold A, Poretto V, Boso F, Giometto B. Paraneoplastic Neuropathies: What's New Since the 2004 Recommended Diagnostic Criteria. Front Neurol 2021; 12: 706169. https://doi.org/10.3389/fneur.2021.706169 DOI: https://doi.org/10.3389/fneur.2021.706169
Lever JR, Fergason-Cantrell EA. Allosteric modulation of sigma receptors by BH3 mimetics ABT-737, ABT-263 (Navitoclax) and ABT-199 (Venetoclax). Pharmacological Research 2019; 142: 87-100. https://doi.org/10.1016/j.phrs.2019.01.040 DOI: https://doi.org/10.1016/j.phrs.2019.01.040
Meunier J, Hayashi T. Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappaB. J Pharmacol Exp Ther 2010; 332(2): 388-97. https://doi.org/10.1124/jpet.109.160960 DOI: https://doi.org/10.1124/jpet.109.160960
Li T, Timmins HC, Lazarus HM, Park SB. Peripheral neuropathy in hematologic malignancies - Past, present and future. Blood Rev 2020; 43: 100653. https://doi.org/10.1016/j.blre.2020.100653 DOI: https://doi.org/10.1016/j.blre.2020.100653
Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J Diabetes Investig 2011; 2(1): 18-32. https://doi.org/10.1111/j.2040-1124.2010.00070.x DOI: https://doi.org/10.1111/j.2040-1124.2010.00070.x
Sempere-Bigorra M, Julián-Rochina I, Cauli O. Chemotherapy-Induced Neuropathy and Diabetes: A Scoping Review. Curr Oncol 2021; 28(4): 3124-38. https://doi.org/10.3390/curroncol28040273 DOI: https://doi.org/10.3390/curroncol28040273
Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care 2010; 33(7): 1674-85. https://doi.org/10.2337/dc10-0666 DOI: https://doi.org/10.2337/dc10-0666
Dale R, Stacey B. Multimodal Treatment of Chronic Pain. Med Clin North Am 2016; 100(1): 55-64. https://doi.org/10.1016/j.mcna.2015.08.012 DOI: https://doi.org/10.1016/j.mcna.2015.08.012
Davis MP. Sigma-1 receptors and animal studies centered on pain and analgesia. Expert Opin Drug Discov 2015; 10(8): 885-900. https://doi.org/10.1517/17460441.2015.1051961 DOI: https://doi.org/10.1517/17460441.2015.1051961
Zhuang T, Xiong J, Hao S, Du W, Liu Z, Liu B, et al. Bifunctional μ opioid and σ(1) receptor ligands as novel analgesics with reduced side effects. Eur J Med Chem 2021; 223: 113658. https://doi.org/10.1016/j.ejmech.2021.113658 DOI: https://doi.org/10.1016/j.ejmech.2021.113658
Chien C, Pasternak G. Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an anti-opioid sigma1 system. Eur J Pharmacology 1993; 250(1): R7-R8. https://doi.org/10.1016/0014-2999(93)90650-7 DOI: https://doi.org/10.1016/0014-2999(93)90650-7
Romero L, Merlos M, Vela JM. Antinociception by Sigma-1 Receptor Antagonists: Central and Peripheral Effects. Adv Pharmacol 2016; 75: 179-215. https://doi.org/10.1016/bs.apha.2015.11.003 DOI: https://doi.org/10.1016/bs.apha.2015.11.003
Mei J, Pasternak GW. Sigma1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther 2002; 300(3): 1070-4. https://doi.org/10.1124/jpet.300.3.1070 DOI: https://doi.org/10.1124/jpet.300.3.1070
Vidal-Torres A, de la Puente B, Rocasalbas M, Touriño C, Andreea Bura S, Fernández-Pastor B, et al. Sigma-1 receptor antagonism as opioid adjuvant strategy: Enhancement of opioid antinociception without increasing adverse effects. European Journal of Pharmacology 2013; 711(1-3): p63-72 2013. https://doi.org/10.1016/j.ejphar.2013.04.018 DOI: https://doi.org/10.1016/j.ejphar.2013.04.018
Intagliata S, Sharma A, King TI, Mesangeau C, Seminerio M, Chin FT, et al. Discovery of a Highly Selective Sigma-2 Receptor Ligand, 1-(4-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one (CM398), with Drug-Like Properties and Antinociceptive Effects In vivo. Aaps j 2020; 22(5): 94. https://doi.org/10.1208/s12248-020-00472-x DOI: https://doi.org/10.1208/s12248-020-00472-x
Wilson LL, Alleyne AR, Eans SO, Cirino TJ, Stacy HM, Mottinelli M, et al. Characterization of CM-398, a Novel Selective Sigma-2 Receptor Ligand, as a Potential Therapeutic for Neuropathic Pain. Molecules 2022; 27(11). https://doi.org/10.3390/molecules27113617 DOI: https://doi.org/10.3390/molecules27113617
Hornick JR, Xu J, Vangveravong S, Tu Z, Mitchem JB, Spitzer D, et al. The novel sigma-2 receptor ligand SW43 stabilizes pancreas cancer progression in combination with gemcitabine. Mol Cancer 2010; 9: 298. https://doi.org/10.1186/1476-4598-9-298 DOI: https://doi.org/10.1186/1476-4598-9-298
Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I. Neuronal Sigma-1 Receptors: Signaling Functions and Protective Roles in Neurodegenerative Diseases. Front Neurosci 2019; 13: 862. https://doi.org/10.3389/fnins.2019.00862 DOI: https://doi.org/10.3389/fnins.2019.00862
Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014; 155(12): 2461-70. https://doi.org/10.1016/j.pain.2014.09.020 DOI: https://doi.org/10.1016/j.pain.2014.09.020
Baig AM. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther 2020; 26(5): 499-501. https://doi.org/10.1111/cns.13372 DOI: https://doi.org/10.1111/cns.13372
Ashton H. Protracted withdrawal syndromes from benzodiazepines. J Subst Abuse Treat 1991; 8(1-2): 19-28. https://doi.org/10.1016/0740-5472(91)90023-4 DOI: https://doi.org/10.1016/0740-5472(91)90023-4
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.