The Potent Regulatory Role of Circular RNAs in Breast Cancer Development, Diagnosis and Treatment: An Update
DOI:
https://doi.org/10.30683/1929-2279.2022.11.04Keywords:
CircRNAs, breast cancer, progression, metastasis, therapy, resistance, biomarkerAbstract
Breast cancer (BC) is one of the most frequent malignant diseases among women worldwide. Circular RNAs (circRNAs) as a novel class of noncoding RNA (ncRNA), display unique features due to their specific circular configuration. One of the important roles of CircRNAs is the regulation of gene expression via different mechanisms, including sponging microRNAs and proteins. Moreover, evidence indicates that circRNAs act as key regulators in the initiation and progression of BC. Currently, many circRNAs have been reported to be associated with different biological processes of BC, such as cell division, migration, invasion, and programmed cell death. The aim of this review was to provide a concise overview of the biogenesis and roles of circRNAs and track the related knowledge in BC development, diagnoses and treatment.
References
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2018; 68(6): 394-424. https://doi.org/10.3322/caac.21492 DOI: https://doi.org/10.3322/caac.21492
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians 2020; 70(1): 7-30. https://doi.org/10.3322/caac.21590 DOI: https://doi.org/10.3322/caac.21590
Waks AG, Winer EP. Breast cancer treatment: a review. JAMA 2019; 321(3): 288-300. https://doi.org/10.1001/jama.2018.19323 DOI: https://doi.org/10.1001/jama.2018.19323
Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Medicine 2019; 8(12): 5574-6. https://doi.org/10.1002/cam4.2474 DOI: https://doi.org/10.1002/cam4.2474
Marquette C, Nabell L. Chemotherapy-resistant metastatic breast cancer. Current Treatment Options in Oncology 2012; 13(2): 263-75. https://doi.org/10.1007/s11864-012-0184-6 DOI: https://doi.org/10.1007/s11864-012-0184-6
Mozdarani H, Ezzatizadeh V, Rahbar Parvaneh R. The emerging role of the long non-coding RNA HOTAIR in breast cancer development and treatment. Journal of Translational Medicine 2020; 18: 1-15. https://doi.org/10.1186/s12967-020-02320-0 DOI: https://doi.org/10.1186/s12967-020-02320-0
Bakhtari N, Mozdarani H, Salimi M, Omranipour R. Association study of miR-22 and miR-335 expression levels and G2 assay related inherent radiosensitivity in peripheral blood of ductal carcinoma breast cancer patients. Neoplasma 2020. https://doi.org/10.4149/neo_2020_200225N185 DOI: https://doi.org/10.4149/neo_2020_200225N185
Bolha L, Ravnik-Glavač M, Glavač D. Circular RNAs: biogenesis, function, and a role as possible cancer biomarkers. International Journal of Genomics 2017; 2017. https://doi.org/10.1155/2017/6218353 DOI: https://doi.org/10.1155/2017/6218353
Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences 1976; 73(11): 3852-6. https://doi.org/10.1073/pnas.73.11.3852 DOI: https://doi.org/10.1073/pnas.73.11.3852
Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis‐splicing yields circular RNA molecules. The FASEB Journal 1993; 7(1): 155-60. https://doi.org/10.1096/fasebj.7.1.7678559 DOI: https://doi.org/10.1096/fasebj.7.1.7678559
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7(2): e30733. https://doi.org/10.1371/journal.pone.0030733 DOI: https://doi.org/10.1371/journal.pone.0030733
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell 2014; 56(1): 55-66. https://doi.org/10.1016/j.molcel.2014.08.019 DOI: https://doi.org/10.1016/j.molcel.2014.08.019
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495(7441): 384-8. https://doi.org/10.1038/nature11993 DOI: https://doi.org/10.1038/nature11993
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death & Differentiation 2017; 24(2): 357-70. https://doi.org/10.1038/cdd.2016.133 DOI: https://doi.org/10.1038/cdd.2016.133
Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan L, et al. Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death & Disease 2019; 10(2): 1-14. https://doi.org/10.1038/s41419-018-1287-1 DOI: https://doi.org/10.1038/s41419-018-1287-1
Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Research 2006; 34(8): e63-e. https://doi.org/10.1093/nar/gkl151 DOI: https://doi.org/10.1093/nar/gkl151
Kristensen L, Hansen T, Venø M, Kjems J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 2018; 37(5): 555-65. https://doi.org/10.1038/onc.2017.361 DOI: https://doi.org/10.1038/onc.2017.361
Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 2015; 10(10): e0141214. https://doi.org/10.1371/journal.pone.0141214 DOI: https://doi.org/10.1371/journal.pone.0141214
Zhang Z, Yang T, Xiao J. Circular RNAs: promising biomarkers for human diseases. EBioMedicine 2018; 34: 267-74. https://doi.org/10.1016/j.ebiom.2018.07.036 DOI: https://doi.org/10.1016/j.ebiom.2018.07.036
Chen L-L, Yang L. Regulation of circRNA biogenesis. RNA Biology 2015; 12(4): 381-8. https://doi.org/10.1080/15476286.2015.1020271 DOI: https://doi.org/10.1080/15476286.2015.1020271
Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA 2015; 21(2): 172-9. https://doi.org/10.1261/rna.048272.114 DOI: https://doi.org/10.1261/rna.048272.114
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57. https://doi.org/10.1261/rna.035667.112 DOI: https://doi.org/10.1261/rna.035667.112
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015; 160(6): 1125-34. https://doi.org/10.1016/j.cell.2015.02.014 DOI: https://doi.org/10.1016/j.cell.2015.02.014
Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Reports 2015; 10(2): 170-7. https://doi.org/10.1016/j.celrep.2014.12.019 DOI: https://doi.org/10.1016/j.celrep.2014.12.019
Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Molecular Cell 2015; 58(5): 870-85. https://doi.org/10.1016/j.molcel.2015.03.027 DOI: https://doi.org/10.1016/j.molcel.2015.03.027
Zhang X-O, Wang H-B, Zhang Y, Lu X, Chen L-L, Yang L. Complementary sequence-mediated exon circularization. Cell 2014; 159(1): 134-47. https://doi.org/10.1016/j.cell.2014.09.001 DOI: https://doi.org/10.1016/j.cell.2014.09.001
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology 2015; 22(3): 256. https://doi.org/10.1038/nsmb.2959 DOI: https://doi.org/10.1038/nsmb.2959
Zhang Y, Zhang X-O, Chen T, Xiang J-F, Yin Q-F, Xing Y-H, et al. Circular intronic long noncoding RNAs. Molecular Cell 2013; 51(6): 792-806. https://doi.org/10.1016/j.molcel.2013.08.017 DOI: https://doi.org/10.1016/j.molcel.2013.08.017
Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 2016; 165(2): 289-302. https://doi.org/10.1016/j.cell.2016.03.020 DOI: https://doi.org/10.1016/j.cell.2016.03.020
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8. https://doi.org/10.1038/nature11928 DOI: https://doi.org/10.1038/nature11928
Chen I, Chen CY, Chuang TJ. Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdisciplinary Reviews: RNA 2015; 6(5): 563-79. https://doi.org/10.1002/wrna.1294 DOI: https://doi.org/10.1002/wrna.1294
Lu M. Circular RNA: functions, applications and prospects. ExRNA 2020; 2(1): 1-7. https://doi.org/10.1186/s41544-019-0046-5 DOI: https://doi.org/10.1186/s41544-019-0046-5
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33. https://doi.org/10.1016/j.cell.2009.01.002 DOI: https://doi.org/10.1016/j.cell.2009.01.002
Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 2007; 4(9): 721-6. https://doi.org/10.1038/nmeth1079 DOI: https://doi.org/10.1038/nmeth1079
Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Research 2013; 73(18): 5609-12. https://doi.org/10.1158/0008-5472.CAN-13-1568 DOI: https://doi.org/10.1158/0008-5472.CAN-13-1568
Panda AC, Grammatikakis I, Kim KM, De S, Martindale JL, Munk R, et al. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Research 2017; 45(7): 4021-35. https://doi.org/10.1093/nar/gkw1201 DOI: https://doi.org/10.1093/nar/gkw1201
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Communications 2016; 7(1): 1-13. https://doi.org/10.1038/ncomms11215 DOI: https://doi.org/10.1038/ncomms11215
Hsiao K-Y, Lin Y-C, Gupta SK, Chang N, Yen L, Sun HS, et al. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Research 2017; 77(9): 2339-50. https://doi.org/10.1158/0008-5472.CAN-16-1883 DOI: https://doi.org/10.1158/0008-5472.CAN-16-1883
Li F, Zhang L, Li W, Deng J, Zheng J, An M, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 2015; 6(8): 6001. https://doi.org/10.18632/oncotarget.3469 DOI: https://doi.org/10.18632/oncotarget.3469
Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biology 2017; 14(3): 361-9. https://doi.org/10.1080/15476286.2017.1279788 DOI: https://doi.org/10.1080/15476286.2017.1279788
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Research 2016; 44(6): 2846-58. https://doi.org/10.1093/nar/gkw027 DOI: https://doi.org/10.1093/nar/gkw027
Fang L, Du WW, Lyu J, Dong J, Zhang C, Yang W, et al. Enhanced breast cancer progression by mutant p53 is inhibited by the circular RNA circ-Ccnb1. Cell Death & Differentiation 2018; 25(12): 2195-208. https://doi.org/10.1038/s41418-018-0115-6 DOI: https://doi.org/10.1038/s41418-018-0115-6
Filbin ME, Kieft JS. Toward a structural understanding of IRES RNA function. Current Opinion in Structural Biology 2009; 19(3): 267-76. https://doi.org/10.1016/j.sbi.2009.03.005 DOI: https://doi.org/10.1016/j.sbi.2009.03.005
Chen C-y, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995; 268(5209): 415-7. https://doi.org/10.1126/science.7536344 DOI: https://doi.org/10.1126/science.7536344
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Molecular Cell 2017; 66(1): 22-37. e9. https://doi.org/10.1016/j.molcel.2017.02.017 DOI: https://doi.org/10.1016/j.molcel.2017.02.017
Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 2018; 37(13): 1805-14. https://doi.org/10.1038/s41388-017-0019-9 DOI: https://doi.org/10.1038/s41388-017-0019-9
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N 6-methyladenosine. Cell Research 2017; 27(5): 626-41. https://doi.org/10.1038/cr.2017.31 DOI: https://doi.org/10.1038/cr.2017.31
Greene J, Baird A-M, Brady L, Lim M, Gray SG, McDermott R, et al. Circular RNAs: biogenesis, function and role in human diseases. Frontiers in Molecular Biosciences 2017; 4: 38. https://doi.org/10.3389/fmolb.2017.00038 DOI: https://doi.org/10.3389/fmolb.2017.00038
Nair AA, Niu N, Tang X, Thompson KJ, Wang L, Kocher J-P, et al. Circular RNAs and their associations with breast cancer subtypes. Oncotarget 2016; 7(49): 80967. https://doi.org/10.18632/oncotarget.13134 DOI: https://doi.org/10.18632/oncotarget.13134
Yin W-B, Yan M-G, Fang X, Guo J-J, Xiong W, Zhang R-P. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clinica Chimica Acta 2018; 487: 363-8. https://doi.org/10.1016/j.cca.2017.10.011 DOI: https://doi.org/10.1016/j.cca.2017.10.011
Wang X, Fang L. Advances in circular RNAs and their roles in breast Cancer. Journal of Experimental & Clinical Cancer Research 2018; 37(1): 206. https://doi.org/10.1186/s13046-018-0870-8 DOI: https://doi.org/10.1186/s13046-018-0870-8
Beresford MJ, Wilson GD, Makris A. Measuring proliferation in breast cancer: practicalities and applications. Breast Cancer Research 2006; 8(6): 1-11. https://doi.org/10.1186/bcr1618 DOI: https://doi.org/10.1186/bcr1618
Liang H-F, Zhang X-Z, Liu B-G, Jia G-T, Li W-L. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. American Journal of Cancer Research 2017; 7(7): 1566.
He R, Liu P, Xie X, Zhou Y, Liao Q, Xiong W, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. Journal of Experimental & Clinical Cancer Research 2017; 36(1): 1-12. https://doi.org/10.1186/s13046-017-0614-1 DOI: https://doi.org/10.1186/s13046-017-0614-1
Wang N, Gu Y, Li L, Wang F, Lv P, Xiong Y, et al. Circular RNA circMYO9B facilitates breast cancer cell proliferation and invasiveness via upregulating FOXP4 expression by sponging miR-4316. Archives of Biochemistry and Biophysics 2018; 653: 63-70. https://doi.org/10.1016/j.abb.2018.04.017 DOI: https://doi.org/10.1016/j.abb.2018.04.017
Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene 2018; 37(44): 5829-42. https://doi.org/10.1038/s41388-018-0369-y DOI: https://doi.org/10.1038/s41388-018-0369-y
Liang G, Ling Y, Mehrpour M, Saw PE, Liu Z, Tan W, et al. Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression. Molecular Cancer 2020; 19(1): 1-16. https://doi.org/10.1186/s12943-020-01152-2 DOI: https://doi.org/10.1186/s12943-020-01152-2
Meng L, Liu S, Liu F, Sang M, Ju Y, Fan X, et al. ZEB1-Mediated Transcriptional Upregulation of circWWC3 Promotes Breast Cancer Progression through Activating Ras Signaling Pathway. Molecular Therapy-Nucleic Acids 2020; 22: 124-37. https://doi.org/10.1016/j.omtn.2020.08.015 DOI: https://doi.org/10.1016/j.omtn.2020.08.015
Hu Y, Guo F, Zhu H, Tan X, Zhu X, Liu X, et al. Circular RNA-0001283 suppresses breast cancer proliferation and invasion via MiR-187/HIPK3 axis. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 2020; 26: e921502-1. https://doi.org/10.12659/MSM.921502 DOI: https://doi.org/10.12659/MSM.921502
Wang H, Xiao Y, Wu L, Ma D. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis. International Journal of Oncology 2018; 52(3): 743-54. https://doi.org/10.3892/ijo.2018.4265 DOI: https://doi.org/10.3892/ijo.2018.4265
Hubbi ME, Semenza GL. Regulation of cell proliferation by hypoxia-inducible factors. American Journal of Physiology-Cell Physiology 2015; 309(12): C775-C82. https://doi.org/10.1152/ajpcell.00279.2015 DOI: https://doi.org/10.1152/ajpcell.00279.2015
Liang G, Liu Z, Tan L, Su A, Jiang WG, Gong C. HIF1α-associated circDENND4C promotes proliferation of breast cancer cells in hypoxic environment. Anticancer Research 2017; 37(8): 4337-43. https://doi.org/10.21873/anticanres.11827 DOI: https://doi.org/10.21873/anticanres.11827
Ren S, Liu J, Feng Y, Li Z, He L, Li L, et al. Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia. Journal of Experimental & Clinical Cancer Research 2019; 38(1): 1-12. https://doi.org/10.1186/s13046-019-1398-2 DOI: https://doi.org/10.1186/s13046-019-1398-2
Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, et al. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death & Disease 2020; 11(2): 1-10. https://doi.org/10.1038/s41419-020-2336-0 DOI: https://doi.org/10.1038/s41419-020-2336-0
Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biology 2018; 19(1): 1-14. https://doi.org/10.1186/s13059-018-1594-y DOI: https://doi.org/10.1186/s13059-018-1594-y
Wu J, Jiang Z, Chen C, Hu Q, Fu Z, Chen J, et al. CircIRAK3 sponges miR-3607 to facilitate breast cancer metastasis. Cancer Letters 2018; 430: 179-92. https://doi.org/10.1016/j.canlet.2018.05.033 DOI: https://doi.org/10.1016/j.canlet.2018.05.033
Du WW, Yang W, Li X, Fang L, Wu N, Li F, et al. The circular RNA circSKA3 binds integrin β1 to induce invadopodium formation enhancing breast cancer invasion. Molecular Therapy 2020; 28(5): 1287-98. https://doi.org/10.1016/j.ymthe.2020.03.002 DOI: https://doi.org/10.1016/j.ymthe.2020.03.002
Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, Stanger BZ, et al. Upholding a role for EMT in breast cancer metastasis. Nature 2017; 547(7661): E1-E3. https://doi.org/10.1038/nature22816 DOI: https://doi.org/10.1038/nature22816
Zeng K, He B, Yang BB, Xu T, Chen X, Xu M, et al. The pro-metastasis effect of circANKS1B in breast cancer. Molecular Cancer 2018; 17(1): 1-19. https://doi.org/10.1186/s12943-018-0914-x DOI: https://doi.org/10.1186/s12943-018-0914-x
Zhou J, Zhang W-W, Peng F, Sun J-Y, He Z-Y, Wu S-G. Downregulation of hsa_circ_0011946 suppresses the migration and invasion of the breast cancer cell line MCF-7 by targeting RFC3. Cancer Management and Research 2018; 10: 535. https://doi.org/10.2147/CMAR.S155923 DOI: https://doi.org/10.2147/CMAR.S155923
He Z-Y, Wu S-G, Peng F, Zhang Q, Luo Y, Chen M, et al. Up-Regulation of RFC3 promotes triple negative breast cancer metastasis and is associated with poor prognosis via EMT. Translational Oncology 2017; 10(1): 1-9. https://doi.org/10.1016/j.tranon.2016.10.004 DOI: https://doi.org/10.1016/j.tranon.2016.10.004
Gao D, Zhang X, Liu B, Meng D, Fang K, Guo Z, et al. Screening circular RNA related to chemotherapeutic resistance in breast cancer. Epigenomics 2017; 9(9): 1175-88. https://doi.org/10.2217/epi-2017-0055 DOI: https://doi.org/10.2217/epi-2017-0055
Liang Y, Song X, Li Y, Su P, Han D, Ma T, et al. circKDM4C suppresses tumor progression and attenuates doxorubicin resistance by regulating miR-548p/PBLD axis in breast cancer. Oncogene 2019; 38(42): 6850-66. https://doi.org/10.1038/s41388-019-0926-z DOI: https://doi.org/10.1038/s41388-019-0926-z
Liang Y, Song X, Li Y, Ma T, Su P, Guo R, et al. Targeting the circBMPR2/miR-553/USP4 axis as a potent therapeutic approach for breast cancer. Molecular Therapy-Nucleic Acids 2019; 17: 347-61. https://doi.org/10.1016/j.omtn.2019.05.005 DOI: https://doi.org/10.1016/j.omtn.2019.05.005
Sang Y, Chen B, Song X, Li Y, Liang Y, Han D, et al. circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Molecular Therapy 2019; 27(9): 1638-52. https://doi.org/10.1016/j.ymthe.2019.05.011 DOI: https://doi.org/10.1016/j.ymthe.2019.05.011
Ma J, Fang L, Yang Q, Hibberd S, Du WW, Wu N, et al. Posttranscriptional regulation of AKT by circular RNA angiomotin-like 1 mediates chemoresistance against paclitaxel in breast cancer cells. Aging (Albany NY) 2019; 11(23): 11369. https://doi.org/10.18632/aging.102535 DOI: https://doi.org/10.18632/aging.102535
Yang W, Gong P, Yang Y, Yang C, Yang B, Ren L. Circ-ABCB10 contributes to paclitaxel resistance in breast cancer through Let-7a-5p/DUSP7 axis. Cancer Management and Research 2020; 12: 2327. https://doi.org/10.2147/CMAR.S238513 DOI: https://doi.org/10.2147/CMAR.S238513
Yang W, Yang X, Wang X, Gu J, Zhou D, Wang Y, et al. Silencing CDR1as enhances the sensitivity of breast cancer cells to drug resistance by acting as a miR‐7 sponge to down‐regulate REGγ. Journal of Cellular and Molecular Medicine 2019; 23(8): 4921-32. https://doi.org/10.1111/jcmm.14305 DOI: https://doi.org/10.1111/jcmm.14305
Liu Y, Dong Y, Zhao L, Su L, Luo J. Circular RNA‑MTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis. International Journal of Oncology 2018; 53(4): 1752-62. https://doi.org/10.3892/ijo.2018.4485 DOI: https://doi.org/10.3892/ijo.2018.4485
Mozdarani H, Salimi M, Bakhtari N. Inherent radiosensitivity and its impact on breast cancer chemo-radiotherapy. International Journal of Radiation Research 2017; 15(4): 325-41.
Salimi M, Mozdarani H. [gamma]-H2AX as a protein biomarker for radiation exposure response in ductal carcinoma breast tumors: Experimental evidence and literature review. International Journal of Radiation Research 2014; 12(1): 1.
Shahidi M, Mozdarani S, Shammas S. Interindividual differences in radiation-induced apoptosis of peripheral blood leukocytes in normal individuals and breast cancer patients. Int J Radiat Res 2012; 9(4): 237-244.
Zhao Y, Yi J, Tao L, Huang G, Chu X, Song H, et al. Wnt signaling induces radioresistance through upregulating HMGB1 in esophageal squamous cell carcinoma. Cell Death & Disease 2018; 9(4): 1-15. https://doi.org/10.1038/s41419-018-0466-4 DOI: https://doi.org/10.1038/s41419-018-0466-4
Su H, Lin F, Deng X, Shen L, Fang Y, Fei Z, et al. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. Journal of Translational Medicine 2016; 14(1): 225. https://doi.org/10.1186/s12967-016-0977-7 DOI: https://doi.org/10.1186/s12967-016-0977-7
Chen G, Li Y, He Y, Zeng B, Yi C, Wang C, et al. Upregulation of circular RNA circATRNL1 to sensitize oral squamous cell carcinoma to irradiation. Molecular Therapy-Nucleic Acids 2020; 19: 961-73. https://doi.org/10.1016/j.omtn.2019.12.031 DOI: https://doi.org/10.1016/j.omtn.2019.12.031
Yang W, Liu Y, Gao R, Xiu Z, Sun T. Knockdown of cZNF292 suppressed hypoxic human hepatoma SMMC7721 cell proliferation, vasculogenic mimicry, and radioresistance. Cellular Signalling 2019; 60: 122-35. https://doi.org/10.1016/j.cellsig.2019.04.011 DOI: https://doi.org/10.1016/j.cellsig.2019.04.011
Wang L, Peng X, Lu X, Wei Q, Chen M, Liu L. Inhibition of hsa_circ_0001313 (circCCDC66) induction enhances the radio-sensitivity of colon cancer cells via tumor suppressor miR-338-3p: effects of cicr_0001313 on colon cancer radio-sensitivity. Pathology-Research and Practice 2019; 215(4): 689-96. https://doi.org/10.1016/j.prp.2018.12.032 DOI: https://doi.org/10.1016/j.prp.2018.12.032
Chen L, Zhou H, Guan Z. CircRNA_000543 knockdown sensitizes nasopharyngeal carcinoma to irradiation by targeting miR-9/platelet-derived growth factor receptor B axis. Biochemical and Biophysical Research Communications 2019; 512(4): 786-92. https://doi.org/10.1016/j.bbrc.2019.03.126 DOI: https://doi.org/10.1016/j.bbrc.2019.03.126
Zhao M, Xu J, Zhong S, Liu Y, Xiao H, Geng L, et al. Expression profiles and potential functions of circular RNAs in extracellular vesicles isolated from radioresistant glioma cells. Oncology Reports 2019; 41(3): 1893-900. https://doi.org/10.3892/or.2019.6972 DOI: https://doi.org/10.3892/or.2019.6972
Chen Y-Y, Jiang M-J, Chen Z-L, Tian L. Analysis of exosomal circRNAs upon irradiation in pancreatic cancer cell repopulation 2020. https://doi.org/10.21203/rs.2.13331/v5 DOI: https://doi.org/10.21203/rs.2.13331/v5
Bahn JH, Zhang Q, Li F, Chan T-M, Lin X, Kim Y, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clinical Chemistry 2015; 61(1): 221-30. https://doi.org/10.1373/clinchem.2014.230433 DOI: https://doi.org/10.1373/clinchem.2014.230433
Hu Y, Song Q, Zhao J, Ruan J, He F, Yang X, et al. Identification of plasma hsa_circ_0008673 expression as a potential biomarker and tumor regulator of breast cancer. Journal of Clinical Laboratory Analysis 2020; 34(9): e23393. https://doi.org/10.1002/jcla.23393 DOI: https://doi.org/10.1002/jcla.23393
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, et al. circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Molecular Therapy-Nucleic Acids 2019; 18: 88-98. https://doi.org/10.1016/j.omtn.2019.07.023 DOI: https://doi.org/10.1016/j.omtn.2019.07.023
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.