43 Natural Anticancer Products: Classified under the Cancer Hallmarks and the Available Evidence of their Anticancer Activities


  • Dwight L. McKee Integrative Cancer Consulting, Apros, CA, USA
  • Mamoona S. Lodhi Mamji Orthopedic & General Hospital, Karachi, Pakistan




Chemotherapy, anticancer activity, meta-analysis, nutritional supplements, stilbene, invasion, metastasis, cancer stem cells


About 60% of chemotherapeutic agents used for the treatment of cancer diseases today have been derived from natural products. While some of these agents are identical to the natural molecules found in plants; the others are semisynthetic derivative of the foundational molecule found naturally in the raw sources. Cancers have been reported to express 10 specific hallmark which are used as the key points or steps for targeted therapy against these cancers. Extending the number of these hallmarks to 12 this review article throws light on 43 natural products classifying them according to their target of action. Further, the natural products under consideration are categorized according to the level of evidence present for their anticancer activities.


Dyshlovoy SA, Honecker F. Marine Compounds and Cancer: The First Two Decades of XXI Century. Mar Drugs. 2019; 18(1): 20. https://doi.org/10.3390/md18010020 DOI: https://doi.org/10.3390/md18010020

Huang M, Lu JJ, Ding J. Natural Products in Cancer Therapy: Past, Present and Future. Nat Prod Bioprospect 2021; 11: 5-13. https://doi.org/10.1007/s13659-020-00293-7 DOI: https://doi.org/10.1007/s13659-020-00293-7

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9 DOI: https://doi.org/10.1016/S0092-8674(00)81683-9

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74. https://doi.org/10.1016/j.cell.2011.02.013 DOI: https://doi.org/10.1016/j.cell.2011.02.013

Gean Pablo S. Aguiar, Daiane L. Boschetto, Lorenzo M.P.C. Chaves, Bianca D. Arcari, Angelo L. Piato, J. Vladimir Oliveira, Marcelo Lanza, Trans-resveratrol micronization by SEDS technique. Industrial Crops and Products 2016; 89: 350-355. https://doi.org/10.1016/j.indcrop.2016.04.047 DOI: https://doi.org/10.1016/j.indcrop.2016.04.047

Kundu, Shin, Kim, et al. resveratrol inhibits phorbol ester-induced expression of Cox 2 and activation of NF–Kappa B in mouse skin by blocking IkappaB kinase activity. Carcinogenesis 2006; 27: 1465-1474. https://doi.org/10.1093/carcin/bgi349 DOI: https://doi.org/10.1093/carcin/bgi349

Berman AY, Motechin RA, Wiesenfeld MY, et al. The therapeutic potential of resveratrol: a review of clinical trials. npj Precision Onc 2017; 1: 35. https://doi.org/10.1038/s41698-017-0038-6 DOI: https://doi.org/10.1038/s41698-017-0038-6

Banik K, Ranaware AM, Harsha C, Nitesh T, Girisa S, Deshpande V, Fan L, Nalawade SP, Sethi G, Kunnumakkara AB. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharmacol Res 2020; 153: 104635. https://doi.org/10.1016/j.phrs.2020.104635 DOI: https://doi.org/10.1016/j.phrs.2020.104635

Obrador E, Salvador-Palmer R, Jihad-Jebbar A, et al. Pterostilbene in Cancer Therapy. Antioxidants (Basel) 2021; 10(3): 492. https://doi.org/10.3390/antiox10030492 DOI: https://doi.org/10.3390/antiox10030492

Graziano S, Johnston R, Deng O, Zhang J, Gonzalo S. Vitamin D/vitamin D receptor axis regulates DNA repair during oncogene-induced senescence. Oncogene 2016; 35(41): 5362-5376. https://doi.org/10.1038/onc.2016.77 DOI: https://doi.org/10.1038/onc.2016.77

Zhang Y, Fang F, Tang J, Jia L, Feng Y, Xu P, et al. Association between vitamin D supplementation and mortality: systematic review and meta-analysis BMJ 2019; 366: l4673. https://doi.org/10.1136/bmj.l4673 DOI: https://doi.org/10.1136/bmj.l4673

The use of high-selenium yeast to raise selenium status: how does it measure up? Margaret P. Rayman; British Journal of Nutrition 2004; 92: 557-573. https://doi.org/10.1079/BJN20041251 DOI: https://doi.org/10.1079/BJN20041251

El-Bayoumy, Karam, Sinha, Raghu, Richie, John. Forms of Selenium in Cancer Prevention 2015.

Asfour IA, Fayek M, Raouf S, Soliman M, Hegab HM, El-Desoky H, Saleh R, Moussa MA. The impact of high-dose sodium selenite therapy on Bcl-2 expression in adult non-Hodgkin's lymphoma patients: correlation with response and survival. Biol Trace Elem Res 2007; 120(1-3): 1-10. https://doi.org/10.1007/s12011-007-0029-5 DOI: https://doi.org/10.1007/s12011-007-0029-5

Husain K, Centeno BA, Coppola D, Trevino J, Sebti SM, Malafa MP. δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis. Oncotarget 2017; 8(19): 31554-31567. https://doi.org/10.18632/oncotarget.15767 DOI: https://doi.org/10.18632/oncotarget.15767

Thomsen CB, Andersen RF, Steffensen KD, Adimi P, Jakobsen A. Delta tocotrienol in recurrent ovarian cancer. A phase II trial. Pharmacol Res 2019; 141: 392-396. https://doi.org/10.1016/j.phrs.2019.01.017 DOI: https://doi.org/10.1016/j.phrs.2019.01.017

Springett GM, Husain K, Neuger A, Centeno B, Chen DT, Hutchinson TZ, Lush RM, Sebti S, Malafa MP. A Phase I Safety, Pharmacokinetic, and Pharmacodynamic Presurgical Trial of Vitamin E δ-tocotrienol in Patients with Pancreatic Ductal Neoplasia. EBioMedicine 2015; 2(12): 1987-95. https://doi.org/10.1016/j.ebiom.2015.11.025 DOI: https://doi.org/10.1016/j.ebiom.2015.11.025

Drotleff AM, Bohnsack C, Schneider I, Hahn A, Ternes W. Human oral bioavailability and pharmacokinetics of tocotrienols from tocotrienol-rich (tocopherol-low) barley oil and palm oil formulations. Journal of Functional Foods 2014; 7: 150-160. https://doi.org/10.1016/j.jff.2014.01.001 DOI: https://doi.org/10.1016/j.jff.2014.01.001

Alumkal JJ, Slottke R, Schwartzman J, et al. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Invest New Drugs 2015; 33(2): 480-489. https://doi.org/10.1007/s10637-014-0189-z DOI: https://doi.org/10.1007/s10637-014-0189-z

Lozanovski VJ, Polychronidis G, Gross W, et al. Broccoli sprout supplementation in patients with advanced pancreatic cancer is difficult despite positive effects—results from the POUDER pilot study. Invest New Drugs 2020; 38: 776-784. https://doi.org/10.1007/s10637-019-00826-z DOI: https://doi.org/10.1007/s10637-019-00826-z

Bohn T, Bonet M, Borel P, Keijer J, Landrier J, Milisav I, Dulińska-Litewka J. Mechanistic aspects of carotenoid health benefits – where are we now? Nutrition Research Reviews 2021; 34(2): 276-302. https://doi.org/10.1017/S0954422421000147 DOI: https://doi.org/10.1017/S0954422421000147

Kucuk O, Sarkar FH, Sakr W, et al. Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Biomarkers Prev 2001; 10(8): 861-868.


Fujiki H, Watanabe T, Sueoka E, Rawangkan A, Suganuma M. Cancer Prevention with Green Tea and Its Principal Constituent, EGCG: from Early Investigations to Current Focus on Human Cancer Stem Cells. Mol Cells 2018; 41(2): 73-82.

Green Tea Extracts for the Prevention of Metachronous Colorectal Adenomas: A Pilot Study Masahito Shimizu,1 Yasushi Fukutomi,2 Mitsuo Ninomiya,3 Kazuo Nagura,4 Tomohiro Kato, Cancer Epidemiol Biomarkers Prev 2008; 17(11). November 2008, American Association for Cancer Research. https://doi.org/10.1158/1055-9965.EPI-08-0528 DOI: https://doi.org/10.1158/1055-9965.EPI-08-0528

Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 2013; 15(1): 195-218. https://doi.org/10.1208/s12248-012-9432-8 DOI: https://doi.org/10.1208/s12248-012-9432-8

Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 2014; 46(1): 2-18. https://doi.org/10.4143/crt.2014.46.1.2 DOI: https://doi.org/10.4143/crt.2014.46.1.2

Božović A, Mandušić V, Todorović L, Krajnović M. Estrogen Receptor Beta: The Promising Biomarker and Potential Target in Metastases; IJMS 2021; (22,4). https://doi.org/10.3390/ijms22041656 DOI: https://doi.org/10.3390/ijms22041656

Lazarevic B, Boezelijn G, Diep LM, et al. Efficacy and safety of short-term genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: a randomized, placebo-controlled, double-blind Phase 2 clinical trial. Nutr Cancer 2011; 63(6): 889-898. https://doi.org/10.1080/01635581.2011.582221 DOI: https://doi.org/10.1080/01635581.2011.582221

Kang X, Zhang Q, Wang S, Huang X, Jin S. Effect of soy isoflavones on breast cancer recurrence and death for patients receiving adjuvant endocrine therapy. CMAJ 2010; 182(17): 1857-1862. https://doi.org/10.1503/cmaj.091298 DOI: https://doi.org/10.1503/cmaj.091298

Gleason CE, Carlsson CM, Barnet JH, et al. A preliminary study of the safety, feasibility and cognitive efficacy of soy isoflavone supplements in older men and women. Age Ageing 2009; 38(1): 86-93. https://doi.org/10.1093/ageing/afn227 DOI: https://doi.org/10.1093/ageing/afn227

Block KI, Gyllenhaal C, Lowe L, et al. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol 2015; 35(Suppl): S276-S304.

Liu J, Sun Y, Cheng M, et al. Improving Oral Bioavailability of Luteolin Nanocrystals by Surface Modification of Sodium Dodecyl Sulfate. AAPS PharmSciTech 2021; 22: 133. https://doi.org/10.1208/s12249-021-02012-y DOI: https://doi.org/10.1208/s12249-021-02012-y

Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Imran A, Orhan IE, Rizwan M, Atif M, Gondal TA, Mubarak MS. Luteolin, a flavonoid, as an anticancer agent: A review; Biomedicine & Pharmacotherapy 2019; 112: 108612. https://doi.org/10.1016/j.biopha.2019.108612 DOI: https://doi.org/10.1016/j.biopha.2019.108612

Cutando A, López-Valverde A, Arias-Santiago S, De Vicente J, De Diego RG. Role of Melatonin in Cancer Treatment. Anticancer Research 2012; 32(7): 2747-2753.

Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 2017; 7: 50. https://doi.org/10.1186/s13578-017-0179-x DOI: https://doi.org/10.1186/s13578-017-0179-x

Milad A, Reza BM, Zahra B, Khandan I, Ali Z, Pooyan M, Haroon K, Samaneh M, Maryam D, Hamed M. Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer. Frontiers in Chemistry 2020; 8: 829. https://doi.org/10.3389/fchem.2020.00829 DOI: https://doi.org/10.3389/fchem.2020.00829

Lall RK, Adhami VM, Mukhtar H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol Nutr Food Res 2016; 60(6): 1396-1405. https://doi.org/10.1002/mnfr.201600025 DOI: https://doi.org/10.1002/mnfr.201600025

Farsad-Naeimi A, Alizadeh M, Esfahani A, Aminabad ED. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct 2018; 9(4): 2025-2031. https://doi.org/10.1039/C7FO01898C DOI: https://doi.org/10.1039/C7FO01898C

Maher P. How fisetin reduces the impact of age and disease on CNS function. Front Biosci (Schol Ed) 2015; 7: 58-82. https://doi.org/10.2741/s425 DOI: https://doi.org/10.2741/425

Ashrafian L, Sukhikh G, Kiselev V, et al. Double-blind randomized placebo-controlled multicenter clinical trial (phase IIa) on diindolylmethane's efficacy and safety in the treatment of CIN: implications for cervical cancer prevention. EPMA J 2015; 6: 25. https://doi.org/10.1186/s13167-015-0048-9 DOI: https://doi.org/10.1186/s13167-015-0048-9

Thomson CA, Ho E, Strom MB. Chemopreventive properties of 3,3'-diindolylmethane in breast cancer: evidence from experimental and human studies. Nutr Rev 2016; 74(7): 432-443. https://doi.org/10.1093/nutrit/nuw010 DOI: https://doi.org/10.1093/nutrit/nuw010

Vigushin DM, Poon GK, Boddy A, et al. Phase I and pharmacokinetic study of D-limonene in patients with advanced cancer. Cancer Research Campaign Phase I/II Clinical Trials Committee. Cancer Chemother Pharmacol 1998; 42(2): 111-117. https://doi.org/10.1007/s002800050793 DOI: https://doi.org/10.1007/s002800050793

Hakim IA, Harris RB, Ritenbaugh C. Citrus peel use is associated with reduced risk of squamous cell carcinoma of the skin. Nutr Cancer 2000; 37(2): 161-168. https://doi.org/10.1207/S15327914NC372_7 DOI: https://doi.org/10.1207/S15327914NC372_7

de Groot S, Pijl H, van der Hoeven JJM, Kroep JR. Effects of short-term fasting on cancer treatment. J Exp Clin Cancer Res 2019; 38(1): 209. https://doi.org/10.1186/s13046-019-1189-9 DOI: https://doi.org/10.1186/s13046-019-1189-9

Lin BW, Gong CC, Song HF, Cui YY. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol 2017; 174(11): 1226-1243. https://doi.org/10.1111/bph.13627 DOI: https://doi.org/10.1111/bph.13627

Pan P, Skaer CW, Stirdivant SM, et al. Beneficial Regulation of Metabolic Profiles by Black Raspberries in Human Colorectal Cancer Patients. Cancer Prev Res (Phila) 2015; 8(8): 743-750. https://doi.org/10.1158/1940-6207.CAPR-15-0065 DOI: https://doi.org/10.1158/1940-6207.CAPR-15-0065

Janakiram NB, Mohammed A, Rao CV. Sea Cucumbers Metabolites as Potent Anti-Cancer Agents. Marine Drugs 2015; 13(5): 2909-2923. https://doi.org/10.3390/md13052909 DOI: https://doi.org/10.3390/md13052909

Desai AV, Lu M, Marcus S, Saran A, Malankar A, Mazumder A. A Phase II Trial of TBL12 Sea Cucumber Extract in Patients with Untreated Asymptomatic Myeloma. Blood 2014; 124(21): 5733. https://doi.org/10.1182/blood.V124.21.5733.5733 DOI: https://doi.org/10.1182/blood.V124.21.5733.5733

Hussain H, Ali I, Wang D, Hakkim FL, Westermann B, Rashan L, Ahmed I, Green IR. Boswellic acids: privileged structures to develop lead compounds for anticancer drug discovery. Expert Opinion on Drug Discovery 2021; 16(8): 851-867. https://doi.org/10.1080/17460441.2021.1892640 DOI: https://doi.org/10.1080/17460441.2021.1892640

Kirste S, Treier M, Wehrle SJ, et al. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors: a prospective, randomized, placebo-controlled, double-blind pilot trial. Cancer 2011; 117(16): 3788-3795. https://doi.org/10.1002/cncr.25945 DOI: https://doi.org/10.1002/cncr.25945

Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine 2020; 59: 102975. https://doi.org/10.1016/j.ebiom.2020.102975 DOI: https://doi.org/10.1016/j.ebiom.2020.102975

Darel MB, Valérie D, Denis M. Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Frontiers in Immunology 2021; 12: 506. https://doi.org/10.3389/fimmu.2021.640082 DOI: https://doi.org/10.3389/fimmu.2021.640082

McKee DL, Lodhi MS, Mansoor N. The Influence of Tumor Microenvironment on Tumor Progression; and Anticancer Therapies. Journal of Cancer Research Updates 2020; 9(1): 75-81. https://doi.org/10.30683/1929-2279.2020.09.08 DOI: https://doi.org/10.30683/1929-2279.2020.09.08

Eliza WL, Fai CK, Chung LP. Efficacy of Yun Zhi (Coriolus versicolor) on survival in cancer patients: systematic review and meta-analysis. Recent Pat Inflamm Allergy Drug Discov 2012; 6(1): 78-87. https://doi.org/10.2174/187221312798889310 DOI: https://doi.org/10.2174/187221312798889310

McCulloch M, See C, Shu XJ, et al. Astragalus-based Chinese herbs and platinum-based chemotherapy for advanced non-small-cell lung cancer: meta-analysis of randomized trials. J Clin Oncol 2006; 24(3): 419-430. https://doi.org/10.1200/JCO.2005.03.6392 DOI: https://doi.org/10.1200/JCO.2005.03.6392

Wu P, Dugoua JJ, Eyawo O, Mills EJ. Traditional Chinese Medicines in the treatment of hepatocellular cancers: a systematic review and meta-analysis. J Exp Clin Cancer Res 2009; 28(1): 112. https://doi.org/10.1186/1756-9966-28-112 DOI: https://doi.org/10.1186/1756-9966-28-112

Fleischer T, Chang TT, Chiang JH, Sun MF, Yen HR. Improved Survival With Integration of Chinese Herbal Medicine Therapy in Patients With Acute Myeloid Leukemia: A Nationwide Population-Based Cohort Study. Integr Cancer Ther 2017; 16(2): 156-164. https://doi.org/10.1177/1534735416664171 DOI: https://doi.org/10.1177/1534735416664171

Dhawan DK, Chadha VD. Zinc: a promising agent in dietary chemoprevention of cancer. Indian J Med Res 2010; 132(6): 676-682.

Wu X, Tang J, Xie M. Serum and hair zinc levels in breast cancer: a meta-analysis. Sci Rep 2015; 5: 12249. https://doi.org/10.1038/srep12249 DOI: https://doi.org/10.1038/srep12249

Tompkins TA, Renard NE, Kiuchi A. Clinical evaluation of the bioavailability of zinc-enriched yeast and zinc gluconate in healthy volunteers. Biol Trace Elem Res 2007; 120(1-3): 28-35. https://doi.org/10.1007/s12011-007-0072-2 DOI: https://doi.org/10.1007/s12011-007-0072-2

Zhang S-Q, Yu X-F, Zhang H-B, Peng N, Chen Z-X, Cheng Q, Zhang X-L, Cheng S-H, Zhang Y. Comparison of the Oral Absorption, Distribution, Excretion, and Bioavailability of Zinc Sulfate, Zinc Gluconate, and Zinc-Enriched Yeast in Rats. Mol Nut Food Research 2018; (62,7). https://doi.org/10.1002/mnfr.201700981 DOI: https://doi.org/10.1002/mnfr.201870049

Ribeiro SMF, Braga CBM, Peria FM, Martinez EZ, Rocha JJRD, Cunha SFC. Effects of zinc supplementation on

fatigue and quality of life in patients with colorectal cancer. Einstein (Sao Paulo) 2017; 15(1): 24-28. https://doi.org/10.1590/s1679-45082017ao3830 DOI: https://doi.org/10.1590/s1679-45082017ao3830

Lin YS, Lin LC, Lin SW. Effects of zinc supplementation on the survival of patients who received concomitant chemotherapy and radiotherapy for advanced nasopharyngeal carcinoma: follow-up of a double-blind randomized study with subgroup analysis. Laryngoscope 2009; 119(7): 1348-1352. https://doi.org/10.1002/lary.20524 DOI: https://doi.org/10.1002/lary.20524

Jin H, Jin X, Cao B, Wang W. Berberine affects osteosarcoma via downregulating the caspase-1/IL-1β signaling axis. Oncol Rep 2017; 37(2): 729-736. https://doi.org/10.3892/or.2016.5327 DOI: https://doi.org/10.3892/or.2016.5327

Hou D, Xu G, Zhang C, et al. Berberine induces oxidative DNA damage and impairs homologous recombination repair in ovarian cancer cells to confer increased sensitivity to PARP inhibition. Cell Death Dis 2017; 8: e3070. https://doi.org/10.1038/cddis.2017.471 DOI: https://doi.org/10.1038/cddis.2017.471

Thomas A, Kamble S, Deshkar S, Kothapalli L, Chitlange S. Bioavailability of berberine: Challenges and solutions. İstanbul Journal of Pharmacy 2021; 51(1): 141-153. https://doi.org/10.26650/IstanbulJPharm.2020.0056 DOI: https://doi.org/10.26650/IstanbulJPharm.2020.0056

Girisa S, Shabnam B, Monisha J, et al. Potential of Zeru-mbone as an Anti-Cancer Agent. Molecules 2019; 24(4): 734. https://doi.org/10.3390/molecules24040734 DOI: https://doi.org/10.3390/molecules24040734

Prasad S, Tyagi AK. Ginger and Its Constituents: Role in Prevention and Treatment of Gastrointestinal Cancer. Gastroenterology Research and Practice Volume 2015; Article ID 142979, 11 pages. https://doi.org/10.1155/2015/142979 DOI: https://doi.org/10.1155/2015/142979

Ting H, Deep G, Agarwal R. Molecular mechanisms of silibinin-mediated cancer chemoprevention with major emphasis on prostate cancer. AAPS J 2013; 15(3): 707-716. https://doi.org/10.1208/s12248-013-9486-2 DOI: https://doi.org/10.1208/s12248-013-9486-2

Mastron, Jeanetta, Siveen, Kodappully, Sethi, Gautam, Bishayee, Anupam. Silymarin and hepatocellular carcinoma: A systematic, comprehensive, and critical review. Anticancer Drugs 2015; 26. https://doi.org/10.1097/CAD.0000000000000211 DOI: https://doi.org/10.1097/CAD.0000000000000211

Ladas EJ, Kroll DJ, Oberlies NH, et al. A randomized, controlled, double-blind, pilot study of milk thistle for the treatment of hepatotoxicity in childhood acute lymphoblastic leukemia (ALL). Cancer 2010; 116(2): 506-513. https://doi.org/10.1002/cncr.24723 DOI: https://doi.org/10.1002/cncr.24723

Vidlar A, Vostalova J, Ulrichova J, et al. The safety and efficacy of a silymarin and selenium combination in men after radical prostatectomy - a six month placebo-controlled double-blind clinical trial. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010; 154(3): 239-244. https://doi.org/10.5507/bp.2010.036 DOI: https://doi.org/10.5507/bp.2010.036

Elyasi S, Hosseini S, Niazi Moghadam MR, Aledavood SA, Karimi G. Effect of Oral Silymarin Administration on Prevention of Radiotherapy Induced Mucositis: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Phytother Res 2016; 30(11): 1879-1885. https://doi.org/10.1002/ptr.5704 DOI: https://doi.org/10.1002/ptr.5704

Liu H, Dong Y, Gao Y, et al. The Fascinating Effects of Baicalein on Cancer: A Review. Int J Mol Sci 2016; 17(10): 1681. https://doi.org/10.3390/ijms17101681 DOI: https://doi.org/10.3390/ijms17101681

A Phase I/II, Multi-Center, Open-Label, Dose-Escalation, Safety and Efficacy Study of PHY906 Plus Capecitabine in Patients With Advanced Pancreatic Carcinoma; ICH GCP; US Clinical Trials Registry; Clinical Trials Nct Page https://ichgcp.net/clinical-trials-registry/NCT00411762.

Xu P, Zhou H, Li YZ, et al. Baicalein Enhances the Oral Bioavailability and Hepatoprotective Effects of Silybin Through the Inhibition of Efflux Transporters BCRP and MRP2. Front Pharmacol 2018; 9: 1115. https://doi.org/10.3389/fphar.2018.01115 DOI: https://doi.org/10.3389/fphar.2018.01115

Imran M, Salehi B, Sharifi-Rad J, et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019; 24(12): 2277. https://doi.org/10.3390/molecules24122277 DOI: https://doi.org/10.3390/molecules24122277


Jiang WG, Sanders AJ, Katoh M, Ungefroren H, et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Seminars in Cancer Biology 2015; (35, Supplement): S244-S275. https://doi.org/10.1016/j.semcancer.2015.03.008 DOI: https://doi.org/10.1016/j.semcancer.2015.03.008

Kapoor R, Huang YS. Gamma linolenic acid: an antiinflammatory omega-6 fatty acid. Curr Pharm Biotechnol 2006; 7(6): 531-534. https://doi.org/10.2174/138920106779116874 DOI: https://doi.org/10.2174/138920106779116874

Jiang WG, Hiscox S, Hallett MB, Horrobin DF, Mansel RE, Puntis MCA. Regulation of the Expression of E-Cadherin on Human Cancer Cells by γ-Linolenic Acid (GLA). Cancer Res 1995; 55(21): 5043-504.

Jiang WG, Singhrao SK, Hiscox S, et al. Regulation of desmosomal cell adhesion in human tumour cells by polyunsaturated fatty acids. Clin Exp Metastasis 1997; 15(6): 593-602. https://doi.org/10.1023/A:1018435229087 DOI: https://doi.org/10.1023/A:1018435229087

Das UN, Prasad VV, Reddy DR. Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Lett 1995; 94(2): 147-155. https://doi.org/10.1016/0304-3835(95)03844-M DOI: https://doi.org/10.1016/0304-3835(95)03844-M

Xu Y, Qian SY. Anti-cancer activities of ω-6 polyunsaturated fatty acids. Biomed J 2014; 37(3): 112-119. https://doi.org/10.4103/2319-4170.131378 DOI: https://doi.org/10.4103/2319-4170.131378

van der Merwe CF, Booyens J, Joubert HF, van der Merwe CA. The effect of gamma-linolenic acid, an in vitro cytostatic substance contained in evening primrose oil, on primary liver cancer. A double-blind placebo controlled trial. Prostaglandins Leukot Essent Fatty Acids 1990; 40(3): 199-202. https://doi.org/10.1016/0952-3278(90)90098-6 DOI: https://doi.org/10.1016/0952-3278(90)90098-6

Rose DP, Rayburn J, Hatala MA, Connolly JM. Effects of dietary fish oil on fatty acids and eicosanoids in metastasizing human breast cancer cells. Nutr Cancer 1994; 22(2): 131-141. https://doi.org/10.1080/01635589409514338 DOI: https://doi.org/10.1080/01635589409514338

Kinoshita K, Noguchi M, Tanaka M. Effects of linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid on the growth and metastasis of MM48 mammary tumor transplants in mice. International Journal of Oncology 1996; 8: 575-581. https://doi.org/10.3892/ijo.8.3.575 DOI: https://doi.org/10.3892/ijo.8.3.575

Suzuki I, Iigo M, Ishikawa C, Kuhara T, Asamoto M, Kunimoto T, Moore MA, Yazawa K, Araki E, Tsuda H. Inhibitory effects of oleic and docosahexaenoic acids on lung metastasis by colon-carcinoma-26 cells are associated with reduced matrix metalloproteinase-2 and -9 activities. Int J Cancer 1997; 73: 607-612. https://doi.org/10.1002/(SICI)1097-0215(19971114)73:4<607::AID-IJC24>3.0.CO;2-4 DOI: https://doi.org/10.1002/(SICI)1097-0215(19971114)73:4<607::AID-IJC24>3.0.CO;2-4

Yam, Daniel & Peled, Alpha & Shinitzky, Meir. Suppression of tumor growth and metastasis by dietary fish oil combined with vitamins E and C and cisplatin. Cancer Chemotherapy and Pharmacology 2001; 47: 34-40. https://doi.org/10.1007/s002800000205 DOI: https://doi.org/10.1007/s002800000205

Bougnoux P, Hajjaji N, Ferrasson MN, Giraudeau B, Couet C, Le Floch O. Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: a phase II trial. Br J Cancer 2009; 101(12): 1978-1985. https://doi.org/10.1038/sj.bjc.6605441 DOI: https://doi.org/10.1038/sj.bjc.6605441

Merendino N, Costantini L, Manzi L, Molinari R, D'Eliseo D, Velotti F. Dietary ω-3 Polyunsaturated Fatty Acid DHA: A Potential Adjuvant in the Treatment of Cancer 2013; Article ID 310186. https://doi.org/10.1155/2013/310186 DOI: https://doi.org/10.1155/2013/310186

Murphy RA, Mourtzakis M, Chu QS, Baracos VE, Reiman T, Mazurak VC. Nutritional intervention with fish oil provides a benefit over standard of care for weight and skeletal muscle mass in patients with nonsmall cell lung cancer receiving chemotherapy. Cancer 2011; 117(8): 1775-1782. https://doi.org/10.1002/cncr.25709 DOI: https://doi.org/10.1002/cncr.25709

Camargo Cde Q, Mocellin MC, Pastore Silva Jde A, Fabre ME, Nunes EA, Trindade EB. Fish oil supplementation during chemotherapy increases posterior time to tumor progression in colorectal cancer. Nutr Cancer 2016; 68(1): 70-76. https://doi.org/10.1080/01635581.2016.1115097 DOI: https://doi.org/10.1080/01635581.2016.1115097

Trabal J, Leyes P, Forga M, Maurel J. Potential usefulness of an EPA-enriched nutritional supplement on chemotherapy tolerability in cancer patients without overt malnutrition. Nutr Hosp 2010; 25(5): 736-740.

Murphy RA, Mourtzakis M, Chu QS, Baracos VE, Reiman T, Mazurak VC. Supplementation with fish oil increases first-line chemotherapy efficacy in patients with advanced nonsmall cell lung cancer. Cancer 2011; 117(16): 3774-3780. https://doi.org/10.1002/cncr.25933 DOI: https://doi.org/10.1002/cncr.25933

Weseler AR, Bast A. Masquelier's grape seed extract: from basic flavonoid research to a well-characterized food supplement with health benefits. Nutr J 2017; 16(1): 5. https://doi.org/10.1186/s12937-016-0218-1 DOI: https://doi.org/10.1186/s12937-016-0218-1

Nandakumar V, Singh T, Katiyar SK. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett 2008; 269(2): 378-387. https://doi.org/10.1016/j.canlet.2008.03.049 DOI: https://doi.org/10.1016/j.canlet.2008.03.049

Ravindranathan P, Pasham D, Balaji U, et al. Mechanistic insights into anticancer properties of oligomeric proanthocyanidins from grape seeds in colorectal cancer. Carcinogenesis 2018; 39(6): 767-777. https://doi.org/10.1093/carcin/bgy034 DOI: https://doi.org/10.1093/carcin/bgy034

Kim HY, Kim YM, Hong S. Astaxanthin suppresses the metastasis of colon cancer by inhibiting the MYC-mediated downregulation of microRNA-29a-3p and microRNA-200a. Sci Rep 2019; 9: 9457. https://doi.org/10.1038/s41598-019-45924-3 DOI: https://doi.org/10.1038/s41598-019-45924-3

McCall B, McPartland CK, Moore R, Frank-Kamenetskii A, Booth BW. Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In vitro. Antioxidants (Basel) 2018; 7(10): 135. https://doi.org/10.3390/antiox7100135 DOI: https://doi.org/10.3390/antiox7100135

Andrea DY, Javiera G, Andrés AM, Pablo G, Cristian A. Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials. Pharmacological Research 2021; 166: 105479. https://doi.org/10.1016/j.phrs.2021.105479 DOI: https://doi.org/10.1016/j.phrs.2021.105479

Li F, Zhou K, Gao L, et al. Radiation induces the generation of cancer stem cells: A novel mechanism for cancer radioresistance. Oncol Lett 2016; 12(5): 3059-3065. https://doi.org/10.3892/ol.2016.5124 DOI: https://doi.org/10.3892/ol.2016.5124

Li F, Zhou K, Gao L, et al. Radiation induces the generation of cancer stem cells: A novel mechanism for cancer radioresistance. Oncol Lett 2016; 12(5): 3059-3065. https://doi.org/10.3892/ol.2016.5124 DOI: https://doi.org/10.3892/ol.2016.5124

Naujokat C, McKee DL. The "Big Five" Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein. Curr Med Chem. 2021; 28(22): 4321-4342. https://doi.org/10.2174/0929867327666200228110738 DOI: https://doi.org/10.2174/0929867327666200228110738

Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138(4): 645-659. https://doi.org/10.1016/j.cell.2009.06.034 DOI: https://doi.org/10.1016/j.cell.2009.06.034

Taylor WF, Jabbarzadeh E. The use of natural products to target cancer stem cells. Am J Cancer Res 2017; 7(7): 1588-1605.

Chamberlin SR, Blucher A, Wu G, Shinto L, Choonoo G, Kulesz-Martin M, McWeeney S. Natural Product Target Network Reveals Potential for Cancer Combination Therapies. Frontiers in Pharmacology 2019; 10: 557. https://doi.org/10.3389/fphar.2019.00557 DOI: https://doi.org/10.3389/fphar.2019.00557

Mehta D, Uber R, Ingle T, et al. Study of pharmacogenomic information in FDA-approved drug labeling to facilitate application of precision medicine. Drug Discovery Today 2020; 25(5): 813-820. https://doi.org/10.1016/j.drudis.2020.01.023 DOI: https://doi.org/10.1016/j.drudis.2020.01.023




How to Cite

McKee, D. L., & Lodhi, M. S. (2021). 43 Natural Anticancer Products: Classified under the Cancer Hallmarks and the Available Evidence of their Anticancer Activities. Journal of Cancer Research Updates, 10, 56–81. https://doi.org/10.30683/1929-2279.2021.10.08