Pharmacotherapeutic Options for Philadelphia Chromosome-Positive CML
DOI:
https://doi.org/10.6000/1929-2279.2018.07.02.3Keywords:
BCR-ABL, tyrosine kinase, imatinib, nilotinib, dasatinib.Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder of hematopoietic stem cells. Identifying the leading mutation in BCR-ABL that causes CML made it possible to develop a targeted approach against this vastly disseminating disease. The active tyrosine kinase protein of BCR-ABL was effectively blocked with an identified tyrosine kinase inhibitor (TKI), imatinib. Imatinib became the first targeted therapy licensed for patients with chronic-phase CML and its introduction was associated with substantial improvements in response and survival compared with previous therapies. However, drug resistance towards imatinib therapy soon emerged and hence limited the complete eradication of CML in patients receiving imatinib. This is primarily due to the mutations within the ABL kinase domain, and to a lesser degree, due to residual disease after treatment. Nilotinib and dasatinib were soon introduced and showed improved clinical outcomes in patients intolerant and resistant to imatinib treatment. However, the T315I mutant overcame these agents along with imatinib, rendering the treatment ineffective. Exploring the kinase domain of the BCR-ABL protein and identifying key components involved in the signal transduction pathways is crucial towards understanding the disease and developing better strategic approaches towards combating it. In this review, we broadly discuss the current treatment options available against Philadelphia chromosome (Ph) positive BCR-ABL CML.
References
Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 1972; 26(4): 239-257. https://doi.org/10.1038/bjc.1972.33
Weinstein IB, Begemann M, Zhou P, et al. Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. Clinical cancer research : an official journal of the American Association for Cancer Research 1997; 3(12 Pt 2): 2696-2702.
Weinstein IB. Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis 2000; 21(5): 857-864. https://doi.org/10.1093/carcin/21.5.857
Rabbitts TH. Chromosomal translocations in human cancer. Nature 1994; 372(6502): 143-149. https://doi.org/10.1038/372143a0
Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243(5405): 290-293. https://doi.org/10.1038/243290a0
Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the bcr gene and its role in the Ph' translocation. Nature 1985; 315(6022): 758-761. https://doi.org/10.1038/315758a0
Penserga ET, Skorski T. Fusion tyrosine kinases: a result and cause of genomic instability. Oncogene 2007; 26(1): 11-20. https://doi.org/10.1038/sj.onc.1209756
Rohrbacher M, Hasford J. Epidemiology of chronic myeloid leukaemia (CML). Best practice & research Clinical haematology 2009; 22(3): 295-302. https://doi.org/10.1016/j.beha.2009.07.007
Sawyers CL. Chronic myeloid leukemia. The New England journal of medicine 1999; 340(17): 1330-1340. https://doi.org/10.1056/NEJM199904293401706
Pane F, Frigeri F, Sindona M, et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 1996; 88(7): 2410-2414.
Tkachuk DC, Westbrook CA, Andreeff M, et al. Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science 1990; 250(4980): 559-562. https://doi.org/10.1126/science.2237408
Cross NC, Feng L, Chase A, Bungey J, Hughes TP, Goldman JM. Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 1993; 82(6): 1929-1936.
Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature 1990; 344(6263): 251-253. https://doi.org/10.1038/344251a0
Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247(4944): 824-830. https://doi.org/10.1126/science.2406902
Kelliher MA, McLaughlin J, Witte ON, Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proceedings of the National Academy of Sciences of the United States of America 1990; 87(17): 6649-6653. https://doi.org/10.1073/pnas.87.17.6649
Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. The EMBO journal 1990; 9(4): 1069-1078.
Gishizky ML, Witte ON. Initiation of deregulated growth of multipotent progenitor cells by bcr-abl in vitro. Science 1992; 256(5058): 836-839. https://doi.org/10.1126/science.1375394
Nishii K, Kabarowski JH, Gibbons DL, et al. ts BCR-ABL kinase activation confers increased resistance to genotoxic damage via cell cycle block. Oncogene 1996; 13(10): 2225-2234.
Evans CA, Owen-Lynch PJ, Whetton AD, Dive C. Activation of the Abelson tyrosine kinase activity is associated with suppression of apoptosis in hemopoietic cells. Cancer research 1993; 53(8): 1735-1738.
Van Etten RA, Jackson P, Baltimore D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 1989; 58(4): 669-678. https://doi.org/10.1016/0092-8674(89)90102-5
Lewis JM, Baskaran R, Taagepera S, Schwartz MA, Wang JY. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proceedings of the National Academy of Sciences of the United States of America 1996; 93(26): 15174-15179. https://doi.org/10.1073/pnas.93.26.15174
Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nature reviews Cancer 2005; 5(3): 172-183. https://doi.org/10.1038/nrc1567
Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature medicine 1996; 2(5): 561-566. https://doi.org/10.1038/nm0596-561
Druker BJ, Guilhot F, O'Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. The New England journal of medicine 2006; 355(23): 2408-2417. https://doi.org/10.1056/NEJMoa062867
Kantarjian HM, Giles F, Quintas-Cardama A, Cortes J. Important therapeutic targets in chronic myelogenous leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 2007; 13(4): 1089-1097. https://doi.org/10.1158/1078-0432.CCR-06-2147
Savage DG, Antman KH. Imatinib mesylate--a new oral targeted therapy. The New England journal of medicine 2002; 346(9): 683-693. https://doi.org/10.1056/NEJMra013339
Legros L, Bourcier C, Jacquel A, et al. Imatinib mesylate (STI571) decreases the vascular endothelial growth factor plasma concentration in patients with chronic myeloid leukemia. Blood 2004; 104(2): 495-501. https://doi.org/10.1182/blood-2003-08-2695
Kvasnicka HM, Thiele J, Staib P, et al. Reversal of bone marrow angiogenesis in chronic myeloid leukemia following imatinib mesylate (STI571) therapy. Blood 2004; 103(9): 3549-3551. https://doi.org/10.1182/blood-2003-08-2734
O'Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. The New England journal of medicine 2003; 348(11): 994-1004. https://doi.org/10.1056/NEJMoa022457
Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. The New England journal of medicine 2001; 344(14): 1031-1037. https://doi.org/10.1056/NEJM200104053441401
Ottmann OG, Druker BJ, Sawyers CL, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 2002; 100(6): 1965-1971. https://doi.org/10.1182/blood-2001-12-0181
Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer cell 2005; 7(2): 129-141. https://doi.org/10.1016/j.ccr.2005.01.007
O'Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer research 2005; 65(11): 4500-4505. https://doi.org/10.1158/0008-5472.CAN-05-0259
Quintas-Cardama A, Kantarjian H, Cortes J. Flying under the radar: the new wave of BCR-ABL inhibitors. Nature reviews Drug discovery 2007; 6(10): 834-848. https://doi.org/10.1038/nrd2324
Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004; 305(5682): 399-401. https://doi.org/10.1126/science.1099480
Sawyers CL, Hochhaus A, Feldman E, et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002; 99(10): 3530-3539. https://doi.org/10.1182/blood.V99.10.3530
Talpaz M, Silver RT, Druker BJ, et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002; 99(6): 1928-1937. https://doi.org/10.1182/blood.V99.6.1928
Kantarjian H, Sawyers C, Hochhaus A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. The New England journal of medicine 2002; 346(9): 645-652. https://doi.org/10.1056/NEJMoa011573
Hochhaus A, O'Brien SG, Guilhot F, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 2009; 23(6): 1054-1061. https://doi.org/10.1038/leu.2009.38
Cortes J, Giles F, O'Brien S, et al. Result of high-dose imatinib mesylate in patients with Philadelphia chromosome-positive chronic myeloid leukemia after failure of interferon-alpha. Blood 2003; 102(1): 83-86. https://doi.org/10.1182/blood-2003-01-0025
Kantarjian H, Talpaz M, O'Brien S, et al. High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia. Blood 2004; 103(8): 2873-2878. https://doi.org/10.1182/blood-2003-11-3800
Cortes JE, Baccarani M, Guilhot F, et al. Phase III, randomized, open-label study of daily imatinib mesylate 400 mg versus 800 mg in patients with newly diagnosed, previously untreated chronic myeloid leukemia in chronic phase using molecular end points: tyrosine kinase inhibitor optimization and selectivity study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2010; 28(3): 424-430. https://doi.org/10.1200/JCO.2009.25.3724
Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. The New England journal of medicine 2006; 354(24): 2542-2551. https://doi.org/10.1056/NEJMoa055104
Cortes JE, Kantarjian HM, Goldberg SL, et al. High-dose imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: high rates of rapid cytogenetic and molecular responses. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2009; 27(28): 4754-4759. https://doi.org/10.1200/JCO.2008.20.3869
Swords R, Mahalingam D, Padmanabhan S, Carew J, Giles F. Nilotinib: optimal therapy for patients with chronic myeloid leukemia and resistance or intolerance to imatinib. Drug design, development and therapy 2009; 3: 89-101.
Kantarjian HM, Giles FJ, Bhalla KN, et al. Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow-up results. Blood 2011; 117(4): 1141-1145. https://doi.org/10.1182/blood-2010-03-277152
Baranska M, Lewandowski K, Gniot M, Iwola M, Lewandowska M, Komarnicki M. Dasatinib treatment can overcome imatinib and nilotinib resistance in CML patient carrying F359I mutation of BCR-ABL oncogene. Journal of applied genetics 2008; 49(2): 201-203. https://doi.org/10.1007/BF03195613
Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. The New England journal of medicine 2006; 354(24): 2531-2541. https://doi.org/10.1056/NEJMoa055229
Hochhaus A, Kantarjian HM, Baccarani M, et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood 2007; 109(6): 2303-2309. https://doi.org/10.1182/blood-2006-09-047266
Hochhaus A, Baccarani M, Deininger M, et al. Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia 2008; 22(6): 1200-1206. https://doi.org/10.1038/leu.2008.84
Kantarjian H, Pasquini R, Hamerschlak N, et al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia after failure of first-line imatinib: a randomized phase 2 trial. Blood 2007; 109(12): 5143-5150. https://doi.org/10.1182/blood-2006-11-056028
Kantarjian H, Pasquini R, Levy V, et al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia resistant to imatinib at a dose of 400 to 600 milligrams daily: two-year follow-up of a randomized phase 2 study (START-R). Cancer 2009; 115(18): 4136-4147. https://doi.org/10.1002/cncr.24504
Guilhot F, Apperley J, Kim DW, et al. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood 2007; 109(10): 4143-4150. https://doi.org/10.1182/blood-2006-09-046839
Apperley JF, Cortes JE, Kim DW, et al. Dasatinib in the treatment of chronic myeloid leukemia in accelerated phase after imatinib failure: the START a trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2009; 27(21): 3472-3479. https://doi.org/10.1200/JCO.2007.14.3339
Cortes J, Kim DW, Raffoux E, et al. Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase. Leukemia 2008; 22(12): 2176-2183. https://doi.org/10.1038/leu.2008.221
Shah NP, Kantarjian HM, Kim DW, et al. Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2008; 26(19): 3204-3212. https://doi.org/10.1200/JCO.2007.14.9260
Kantarjian H, Cortes J, Kim DW, et al. Phase 3 study of dasatinib 140 mg once daily versus 70 mg twice daily in patients with chronic myeloid leukemia in accelerated phase resistant or intolerant to imatinib: 15-month median follow-up. Blood 2009; 113(25): 6322-6329. https://doi.org/10.1182/blood-2008-11-186817
Azam M, Latek RR, Daley GQ. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 2003; 112(6): 831-843. https://doi.org/10.1016/S0092-8674(03)00190-9
Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293(5531): 876-880. https://doi.org/10.1126/science.1062538
Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16(11): 2190-2196. https://doi.org/10.1038/sj.leu.2402741
Shah NP, Nicoll JM, Nagar B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer cell 2002; 2(2): 117-125. https://doi.org/10.1016/S1535-6108(02)00096-X
Pfeifer H, Wassmann B, Pavlova A, et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2007; 110(2): 727-734. https://doi.org/10.1182/blood-2006-11-052373
Marin D, Goldman JM, Olavarria E, Apperley JF. Transient benefit only from increasing the imatinib dose in CML patients who do not achieve complete cytogenetic remissions on conventional doses. Blood 2003; 102(7): 2702-2703; author reply 2703-2704. https://doi.org/10.1182/blood-2003-06-2042
Kantarjian HM, Giles F, Gattermann N, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 2007; 110(10): 3540-3546. https://doi.org/10.1182/blood-2007-03-080689
le Coutre P, Ottmann OG, Giles F, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 2008; 111(4): 1834-1839. https://doi.org/10.1182/blood-2007-04-083196
Weisser M, Schleuning M, Haferlach C, Schwerdtfeger R, Kolb HJ. Allogeneic stem-cell transplantation provides excellent results in advanced stage chronic myeloid leukemia with major cytogenetic response to pre-transplant imatinib therapy. Leukemia & lymphoma 2007; 48(2): 295-301. https://doi.org/10.1080/10428190601078464
Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2009; 27(35): 6041-6051. https://doi.org/10.1200/JCO.2009.25.0779
Wu J, Meng F, Kong LY, et al. Association between imatinib-resistant BCR-ABL mutation-negative leukemia and persistent activation of LYN kinase. Journal of the National Cancer Institute 2008; 100(13): 926-939. https://doi.org/10.1093/jnci/djn188
Gumireddy K, Baker SJ, Cosenza SC, et al. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proceedings of the National Academy of Sciences of the United States of America 2005; 102(6): 1992-1997. https://doi.org/10.1073/pnas.0408283102
Turner NA, Mughal RS, Warburton P, O'Regan DJ, Ball SG, Porter KE. Mechanism of TNFalpha-induced IL-1alpha, IL-1beta and IL-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones. Cardiovascular research 2007; 76(1): 81-90. https://doi.org/10.1016/j.cardiores.2007.06.003
van Erp NP, Gelderblom H, Karlsson MO, et al. Influence of CYP3A4 inhibition on the steady-state pharmacokinetics of imatinib. Clinical cancer research : an official journal of the American Association for Cancer Research 2007; 13(24): 7394-7400. https://doi.org/10.1158/1078-0432.CCR-07-0346
Green H, Skoglund K, Rommel F, Mirghani RA, Lotfi K. CYP3A activity influences imatinib response in patients with chronic myeloid leukemia: a pilot study on in vivo CYP3A activity. European journal of clinical pharmacology 2010; 66(4): 383-386. https://doi.org/10.1007/s00228-009-0772-y
Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clinical pharmacokinetics 2005; 44(9): 879-894. https://doi.org/10.2165/00003088-200544090-00001
Wilkinson GR. Cytochrome P4503A (CYP3A) metabolism: prediction of in vivo activity in humans. Journal of pharmacokinetics and biopharmaceutics 1996; 24(5): 475-490. https://doi.org/10.1007/BF02353475
Gambacorti-Passerini C, Zucchetti M, Russo D, et al. Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clinical cancer research : an official journal of the American Association for Cancer Research 2003; 9(2): 625-632.
Ashktorab H, Neapolitano M, Bomma C, et al. In vivo and in vitro activation of caspase-8 and -3 associated with Helicobacter pylori infection. Microbes and infection / Institut Pasteur 2002; 4(7): 713-722. https://doi.org/10.1016/S1286-4579(02)01591-5