Nanodiagnostic and Nanotherapeutic Molecular Platforms for Cancer Management

Authors

  • A. Lyberopoulou Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
  • E.P. Efstathopoulos Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
  • M. Gazouli Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

DOI:

https://doi.org/10.6000/1929-2279.2015.04.04.3

Keywords:

Nanotechnology, cancer, nanodiagnostics, nanotherapeutics.

Abstract

 Over the last ten years rapid progress is being made regarding the incorporation of nanoparticles in cancer diagnosis and treatment. Besides the limitations that have to be addressed, there are various research studies suggesting some promising nanodiagnostic and nanotherapeutic platforms for cancer managment. Nanotherapeutic platforms are based on the localized application of nanoparticles using targeting moieties, most usually antibodies, in order to in vivo direct nanoparticles to cancer cells. Thereafter, either nanoparticles react to external stimulus, for example under radiofrequency waves nanoparticles generate thermal energy, or they are used for targeted drug-delivery platforms, which allows the augmentation of drug concentration in the cancerous site of the body and thus minimizing side effects and increasing the efficacy of the drug. Regarding nanodiagnostics, particular focus is paid on nanoparticles that can act as contrast agents in cancer imaging for in vivo nanodiagnostics and on nanobiochips and nanobiosensor, devices that incorporate the lab on a chip notion for in vitro nanodiagnostics. In this review, several advanced nanodiagnostic and nanotherapeutic platforms are discussed, on the development of more effective and targeted molecular techniques in the diagnosis and treatment of cancer.

References

Peng F, Su Y, Zhong Y, Fan C, Lee S-T, He Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc Chem Res 2014; 47(2): 612-623. http://dx.doi.org/10.1021/ar400221g

Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 2012; 41(7): 2590-2605. http://dx.doi.org/10.1039/c1cs15246g

Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 2012; 41(7): 2656-2672. http://dx.doi.org/10.1039/C2CS15261D

Reimhult E, Höök F. Design of surface modifications for nanoscale sensor applications. Sensors (Basel) 2015; 15(1): 1635-75. http://dx.doi.org/10.3390/s150101635

Shen MY, Li BR, Li YK. Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Biosens Bioelectron 2014; 60: 101-11. http://dx.doi.org/10.1016/j.bios.2014.03.057

Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 2005; 23(10): 1294-1301. http://dx.doi.org/10.1038/nbt1138

Gao A, Lu N, Dai P, Fan C, Wang Y, Li T. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays. Nanoscale 2014; 6(21): 13036-42. http://dx.doi.org/10.1039/C4NR03210A

Mohd Azmi MA, Tehrani Z, Lewis RP, et al. Highly sensitive covalently functionalised integrated silicon nanowire biosensor devices for detection of cancer risk biomarker. Biosens Bioelectron 2014; 52: 216-24. http://dx.doi.org/10.1016/j.bios.2013.08.030

Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling JF. Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 2009; 81(21): 9129-34. http://dx.doi.org/10.1021/ac9018022

Takahashi S, Shiraishi T, Miles N, Trock BJ, Kulkarni P, Getzenberg RH. Nanowire analysis of cancer-testis antigens as biomarkers of aggressive prostate cancer. Urology 2015; 85(3): 704.e1-7. http://dx.doi.org/10.1016/j.urology.2014.12.004

Chen HC, Chen YT, Tsai RY, et al. A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis. Biosens Bioelectron 2015; 66: 198-207. http://dx.doi.org/10.1016/j.bios.2014.11.019

Sekhar PK, Ramgir NS, Joshi RK, Bhansali S. Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10. Nanotechnology 2008; 19(24): 245502. http://dx.doi.org/10.1088/0957-4484/19/24/245502

Abiri H, Abdolahad M, Gharooni M, et al. Monitoring the spreading stage of lung cells by silicon nanowire electrical cell impedance sensor for cancer detection purposes. Biosens Bioelectron 2015; 68: 577-85. http://dx.doi.org/10.1016/j.bios.2015.01.057

Lee SK, Kim GS, Wu Y, et al. Nanowire substrate-based laser scanning cytometry for quantitation of circulating tumor cells. Nano Lett 2012; 12(6): 2697-704. http://dx.doi.org/10.1021/nl2041707

Shehada N, Brönstrup G, Funka K, Christiansen S, Leja M, Haick H. Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome. Nano Lett 2015; 15(2): 1288-95. http://dx.doi.org/10.1021/nl504482t

Peng G, Trock E, Haick H. Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett 2008; 8(11): 3631-5. http://dx.doi.org/10.1021/nl801577u

Tran DP, Wolfrum B, Stockmann R, et al. Complementary metal oxide semiconductor compatible silicon nanowires-on-a-chip: fabrication and preclinical validation for the detection of a cancer prognostic protein marker in serum. Anal Chem 2015; 87(3): 1662-8. http://dx.doi.org/10.1021/ac503374j

Shao N, Wickstrom E, Panchapakesan B. Nanotube-antibody biosensor arrays for the detection of circulating breast cancer cells. Nanotechnology 2008; 19(46): 465101. http://dx.doi.org/10.1088/0957-4484/19/46/465101

Abdolahad M, Taghinejad M, Taghinejad H, Janmaleki M, Mohajerzadeh S. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells. Lab Chip 2012; 12(6): 1183-90. http://dx.doi.org/10.1039/c2lc21028b

Patolsky F, Zheng G, Lieber CM. Nanowire sensors for medicine and the life sciences. Nanomedicine (Lond) 2006; 1(1): 51-65. http://dx.doi.org/10.2217/17435889.1.1.51

Patolsky F, Zheng G, Lieber CM. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc 2006; 1(4): 1711-24. http://dx.doi.org/10.1038/nprot.2006.227

Wu CC, Ko FH, Yang YS, Hsia DL, Lee BS, Su TS. Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor. Biosens Bioelectron 2009; 25(4): 820-5. http://dx.doi.org/10.1016/j.bios.2009.08.031

Wu CC, Liu FK, Lin LH, et al. Surface cleaning of the nanowire field-effect transistor for gene detection. J Nanosci Nanotechnol 2011; 11(12): 10639-43. http://dx.doi.org/10.1166/jnn.2011.3952

Lu N, Gao A, Dai P, et al. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small 2014; 10(10): 2022-8. http://dx.doi.org/10.1002/smll.201302990

Huber F, Lang HP, Backmann N, Rimoldi D, Gerber Ch. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nat Nanotechnol 2013; 8(2): 125-9. http://dx.doi.org/10.1038/nnano.2012.263

Wang J, Wang S, Wang X, Zhu Y, Yang J. Cantilever array sensor for multiple liver cancer biomarkers detection. Sensors 2014; 2014: 343-346. http://dx.doi.org/10.1109/icsens.2014.6985004

Liu Y, Li X, Zhang Z, Zuo G, Cheng Z, Yu H. Nanogram per milliliter-level immunologic detection of alpha-fetoprotein with integrated rotating-resonance microcantilevers for early-stage diagnosis of heptocellular carcinoma. Biomed Microdevices 2009; 11(1): 183-91. http://dx.doi.org/10.1007/s10544-008-9223-2

Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 2001; 19(9): 856-60. http://dx.doi.org/10.1038/nbt0901-856

Hwang KS, Lee JH, Park J, Yoon DS, Park JH, Kim TS. In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever. Lab Chip 2004; 4(6): 547-552. http://dx.doi.org/10.1039/b410905h

Jokerst JV, Raamanathan A, Christodoulides N, et al. Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens Bioelectron 2009; 24(12): 3622-9. http://dx.doi.org/10.1016/j.bios.2009.05.026

Gazouli M, Lyberopoulou A, Pericleous P, et al. Development of a quantum-dot-labelled magnetic immunoassay method for circulating colorectal cancer cell detection. World J Gastroenterol 2012; 18(32): 4419-260. http://dx.doi.org/10.3748/wjg.v18.i32.4419

Wang Y, Zhang Y, Du Z, Wu M, Zhang G. Detection of micrometastases in lung cancer with magnetic nanoparticles and quantum dots. Int J Nanomedicine 2012; 7: 2315-24.

Guo S, Chen YQ, Lu NN, Wang XY, Xie M, Sui WP. Ultrasonication-assisted one-step self-assembly preparation of biocompatible fluorescent-magnetic nanobeads for rare cancer cell detection. Nanotechnology 2014; 25(50): 505603. http://dx.doi.org/10.1088/0957-4484/25/50/505603

Pericleous P, Gazouli M, Lyberopoulou A, Rizos S, Nikiteas N, Efstathopoulos EP. Quantum dots hold promise for early cancer imaging and detection. Int J Cancer 2012; 131(3): 519-28. http://dx.doi.org/10.1002/ijc.27528

Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med 2014; 55(12): 1919-22. http://dx.doi.org/10.2967/jnumed.114.146019

Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13(11): 813-27. http://dx.doi.org/10.1038/nrd4333

Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013; 65(1): 71-9. http://dx.doi.org/10.1016/j.addr.2012.10.002

Jain KK. Current status and future prospects of drug delivery systems. Methods Mol Biol 2014; 1141: 1-56. http://dx.doi.org/10.1007/978-1-4939-0363-4_1

Vergaro V, Scarlino F, Bellomo C, et al. Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Adv Drug Deliv Rev 2011; 63(9): 847-64. http://dx.doi.org/10.1016/j.addr.2011.05.007

Vergara D, Bellomo C, Zhang X, et al. Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resis-tance in ovarian cancer. Nanomedicine 2012; 8(6): 891-9. http://dx.doi.org/10.1016/j.nano.2011.10.014

Pattekari P, Zheng Z, Zhang X, Levchenko T, Torchilin V, Lvov Y. Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel. Phys Chem Chem Phys 2011; 13(19): 9014-9. http://dx.doi.org/10.1039/c0cp02549f

Zheng Z, Zhang X, Carbo D, Clark C, Nathan C, Lvov Y. Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. Langmuir 2010; 26(11): 7679-81. http://dx.doi.org/10.1021/la101246a

Wagner E. Programmed drug delivery: nanosystems for tumor targeting. Expert Opin Bio The 2007; 7: 587-5. http://dx.doi.org/10.1517/14712598.7.5.587

Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011; 31(4): 295-302. http://dx.doi.org/10.1007/s10059-011-0051-5

Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010; 7(11): 653-64. http://dx.doi.org/10.1038/nrclinonc.2010.139

Lvov YM, Pattekari P, Zhang X, Torchilin V. Converting poorly soluble materials into stable aqueous nanocolloids. Langmuir 2011; 27(3): 1212-7. http://dx.doi.org/10.1021/la1041635

Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000; 41(2): 147-62. http://dx.doi.org/10.1016/S0169-409X(99)00062-9

Zhen Z, Tang W, Guo C, et al. Ferritin nanocages to encap-sulate and deliver photosensitizers for efficient photodynamic therapy against cancer. ACS Nano 2013; 7(8): 6988-96. http://dx.doi.org/10.1021/nn402199g

Gazouli M, Bouziotis P, Lyberopoulou A, et al. Quantum dots-bevacizumab complexes for in vivo imaging of tumors. In Vivo 2014; 28(6): 1091-5.

Chen Z, Penet MF, Nimmagadda S, et al. PSMA-targeted theranostic nanoplex for prostate cancer therapy. ACS Nano 2012; 6(9): 7752-62. http://dx.doi.org/10.1021/nn301725w

Xiao Y, Hong H, Javadi A, et al. Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials 2012; 33(11): 3071-82. http://dx.doi.org/10.1016/j.biomaterials.2011.12.030

Tagami T, Foltz WD, Ernsting MJ, et al. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials 2011; 32(27): 6570-8. http://dx.doi.org/10.1016/j.biomaterials.2011.05.029

Kaida S, Cabral H, Kumagai M, et al. Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model. Cancer Res 2010; 70(18): 7031-41. http://dx.doi.org/10.1158/0008-5472.CAN-10-0303

Phillips WT, Goins B, Bao A, et al. Rhenium-186 liposomes as convection-enhanced nanoparticle brachytherapy for treatment of glioblastoma. Neuro Oncol 2012; 14(4): 416-25. http://dx.doi.org/10.1093/neuonc/nos060

Liu G, Xie J, Zhang F, et al. N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. Small 2011; 7(19): 2742-9. http://dx.doi.org/10.1002/smll.201100825

Bae KH, Lee JY, Lee SH, Park TG, Nam YS. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv Healthc Mater 2013; 2(4): 576-84. http://dx.doi.org/10.1002/adhm.201200338

Wang Z, Liu G, Zheng H, Chen X. Rigid nanoparticle-based delivery of anti-cancer siRNA: challenges and opportunities. Biotechnol Adv 2014; 32(4): 831-43. http://dx.doi.org/10.1016/j.biotechadv.2013.08.020

Kumagai M, Sarma TK, Cabral H, et al. Enhanced in vivo Magnetic Resonance Imaging of Tumors by PEGylated Iron-Oxide-Gold Core-Shell Nanoparticles with Prolonged Blood Circulation Properties. Macromol Rapid Commun 2010; 31(17): 1521-8. http://dx.doi.org/10.1002/marc.201000341

Ryu JH, Koo H, Sun IC, et al. Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev 2012; 64(13): 1447-58. http://dx.doi.org/10.1016/j.addr.2012.06.012

Irvine D.J, Swartz M.A, Szeto G.L. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater 2013; 12: 978-990. http://dx.doi.org/10.1038/nmat3775

Fifis T, Gamvrellis A, Crimeen-Irwin B, et al. Size-dependent immunogenicity: Therapeutic and protective properties of nano-vaccines against tumors. J Immunol 2004; 173: 3148-3154. http://dx.doi.org/10.4049/jimmunol.173.5.3148

Jeanbart L, Ballester M, de Titta A, et al. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol Res 2014; 2: 436-447. http://dx.doi.org/10.1158/2326-6066.CIR-14-0019-T

Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz MA. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 2014; 35(2): 814-24. http://dx.doi.org/10.1016/j.biomaterials.2013.10.003

Rahimian S, Kleinovink JW, Fransen MF, et al. Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: In vivo tracking and evaluation of antigen-specific CD8(+) T cell immune response. Biomaterials 2015; 37: 469-477. http://dx.doi.org/10.1016/j.biomaterials.2014.10.043

Cruz LJ, Tacken PJ, Zeelenberg IS, et al. Tracking targeted bimodal nanovaccines: Immune responses and routing in cells, tissue, and whole organism. Mol Pharm 2014; 11: 4299-4313. http://dx.doi.org/10.1021/mp400717r

Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials 2014; 35(28): 8186-96. http://dx.doi.org/10.1016/j.biomaterials.2014.05.077

Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: Precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8: 108-120. http://dx.doi.org/10.1038/nrc2326

Shah MA, He N, Li Z, Ali Z, Zhang L. Nanoparticles for DNA vaccine delivery. J Biomed Nanotechnol 2014; 10(9): 2332-49. http://dx.doi.org/10.1166/jbn.2014.1981

Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine 2014; 32(3): 327-37. http://dx.doi.org/10.1016/j.vaccine.2013.11.069

Cui Z, Han SJ, Vangasseri DP, Huang L. Immunostimulation mechanism of LPD nanoparticle as a vaccine carrier. Mol Pharm 2005; 2(1): 22-8. http://dx.doi.org/10.1021/mp049907k

Fang RH, Hu CM, Luk BT, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 2014; 14(4): 2181-8. http://dx.doi.org/10.1021/nl500618u

Gross BP, Wongrakpanich A, Francis MB, Salem AK, Norian LA. A therapeutic microparticle-based tumor lysate vaccine reduces spontaneous metastases in murine breast cancer. AAPS J 2014; 16(6): 1194-203. http://dx.doi.org/10.1208/s12248-014-9662-z

Wang C, Zhuang Y, Zhang Y, et al. Toll-like receptor 3 agonist complexed with cationic liposome augments vaccine-elicited antitumor immunity by enhancing TLR3-IRF3 signaling and type I interferons in dendritic cells. Vaccine 2012; 30(32): 4790-9. http://dx.doi.org/10.1016/j.vaccine.2012.05.027

Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature 2006; 440(7082): 297-302. http://dx.doi.org/10.1038/nature04586

Yan J, Hu C, Wang P, et al. Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery. Angew Chem Int Ed Engl 2015; 54(8): 2431-5. http://dx.doi.org/10.1002/anie.201408247

Zhang Q, Jiang Q, Li N, et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 2014; 8(7): 6633-43. http://dx.doi.org/10.1021/nn502058j

Cho Y, Lee JB, Hong J. Controlled release of an anti-cancer drug from DNA structured nano-films. Sci Rep 2014; 4: 4078. http://dx.doi.org/10.1038/srep04078

Wang ZG, Ding B. Engineering DNA self-assemblies as templates for functional nanostructures. Acc Chem Res 2014; 47(6): 1654-62. http://dx.doi.org/10.1021/ar400305g

Mou Y, Yu JY, Wannier TM, Guo CL, Mayo SL. Computational design of co-assembling protein-DNA nanowires. Nature 2015; 525(7568): 230-3. http://dx.doi.org/10.1038/nature14874

Bhatia D, Surana S, Chakraborty S, Koushika SP, Krishnan Y. A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat Commun 2011; 2: 339. http://dx.doi.org/10.1038/ncomms1337

Zhang H, Ma Y, Xie Y, et al. A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. Sci Rep 2015; 5: 10099. http://dx.doi.org/10.1038/srep10099

Lee H, Lytton-Jean AK, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 2012; 7(6): 389-93. http://dx.doi.org/10.1038/nnano.2012.73

Amir Y, Ben-Ishay E, Levner D, Ittah S, Abu-Horowitz A, Bachelet I. Universal computing by DNA origami robots in a living animal. Nat Nanotechnol 2014; 9(5): 353-7. http://dx.doi.org/10.1038/nnano.2014.58

Douglas SM, Bachelet I, Church GM. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012; 335(6070): 831-4. http://dx.doi.org/10.1126/science.1214081

Downloads

Published

2015-10-29

How to Cite

A. Lyberopoulou, E.P. Efstathopoulos, & M. Gazouli. (2015). Nanodiagnostic and Nanotherapeutic Molecular Platforms for Cancer Management. Journal of Cancer Research Updates, 4(4),  153–162. https://doi.org/10.6000/1929-2279.2015.04.04.3

Issue

Section

Articles