Autophagy in Cancer Therapy: Progress and Issues

Authors

  • Jia-Jie Shi Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
  • Ling-Hua Meng Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China

DOI:

https://doi.org/10.6000/1929-2279.2015.04.01.1

Keywords:

Autophagy, cancer therapy, chloroquine, selective inhibitor.

Abstract

 Autophagy is an evolutionarily conserved intracellular self-digestion process, which mediates homeostasis in response to various stresses via degradation of damaged organelles or unnecessary proteins. It has been demonstrated that autophagy involves in tumorigenesis and progression. Autophagy serves either as tumor suppressor or promotor in a context-dependent way. It has been revealed in multiple studies that autophagy plays a pro-survival role upon treatment of anticancer drugs. Thus, combination of autophagy inhibitors with anticancer drugs may provide a desirable strategy to improve therapeutic efficacy. In this review, we summarize recent progress in the process and regulation of autophagy with a highlight in advances in the role of autophagy in cancer treatment. We also summarize some recent clinical outcomes of combinatorial use of autophagy inhibitors and anticancer drugs, and introduce latest discovered selective autophagy inhibitors. Some issues which should be paid attention to during the research to improve the clinical outcomes are discussed.

References

Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 2007; 27: 19-40. http://dx.doi.org/10.1146/annurev.nutr.27.061406.093749

Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med 2009; 361(16): 1570-83. http://dx.doi.org/10.1056/NEJMra0901217

Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5(9): 726-34. http://dx.doi.org/10.1038/nrc1692

Mizushima N. Autophagy: process and function. Genes Dev 2007; 21(22): 2861-73. http://dx.doi.org/10.1101/gad.1599207

Chen N, Debnath J. Autophagy and tumorigenesis. FEBS Lett 2010; 584(7): 1427-35. http://dx.doi.org/10.1016/j.febslet.2009.12.034

Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013; 368(7): 651-62. http://dx.doi.org/10.1056/NEJMra1205406

Chen Y, Azad MB, Gibson SB. Methods for detecting autophagy and determining autophagy-induced cell death. Can J Physiol Pharmacol 2010; 88(3): 285-95. http://dx.doi.org/10.1139/Y10-010

Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 2007; 9(10): 1102-9. http://dx.doi.org/10.1038/ncb1007-1102

Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci 2012; 69(7): 1125-36. http://dx.doi.org/10.1007/s00018-011-0865-5

Wada Y, Sun-Wada GH, Kawamura N. Microautophagy in the visceral endoderm is essential for mouse early development. Autophagy 2013; 9(2): 252-4. http://dx.doi.org/10.4161/auto.22585

Reggiori F, Komatsu M, Finley K, Simonsen A. Autophagy: more than a nonselective pathway. Int J Cell Biol 2012; 2012: 219625. http://dx.doi.org/10.1155/2012/219625

Rogov V, Dotsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 2014; 53(2): 167-78. http://dx.doi.org/10.1016/j.molcel.2013.12.014

Kirkin V, McEwan DG, Novak I, Dikic I. A role for ubiquitin in selective autophagy. Mol Cell 2009; 34(3): 259-69. http://dx.doi.org/10.1016/j.molcel.2009.04.026

Liu EY, Ryan KM. Autophagy and cancer--issues we need to digest. J Cell Sci 2012; 125(Pt 10): 2349-58. http://dx.doi.org/10.1242/jcs.093708

Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009; 10(7): 458-67. http://dx.doi.org/10.1038/nrm2708

Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 2014; 157(1): 65-75. http://dx.doi.org/10.1016/j.cell.2014.02.049

Fasolo A, Sessa C. Targeting mTOR pathways in human malignancies. Curr Pharm Des 2012; 18(19): 2766-77. http://dx.doi.org/10.2174/138161212800626210

Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004; 18(16): 1926-45. http://dx.doi.org/10.1101/gad.1212704

Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124(3): 471-84. http://dx.doi.org/10.1016/j.cell.2006.01.016

Huang S, Yang ZJ, Yu C, Sinicrope FA. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1. J Biol Chem 2011; 286(46): 40002-12. http://dx.doi.org/10.1074/jbc.M111.297432

Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009; 284(18): 12297-305. http://dx.doi.org/10.1074/jbc.M900573200

Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20(7): 1981-91. http://dx.doi.org/10.1091/mbc.E08-12-1248

Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20(7): 1992-2003. http://dx.doi.org/10.1091/mbc.E08-12-1249

Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011; 27: 107-32. http://dx.doi.org/10.1146/annurev-cellbio-092910-154005

Tooze SA, Yoshimori T. The origin of the autophagosomal membrane. Nat Cell Biol 2010; 12(9): 831-5. http://dx.doi.org/10.1038/ncb0910-831

Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013; 495(7441): 389-93. http://dx.doi.org/10.1038/nature11910

Avalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AF. Tumor suppression and promotion by autophagy. Biomed Res Int 2014; 2014: 603980. http://dx.doi.org/10.1155/2014/603980

Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell 2011; 146(5): 682-95. http://dx.doi.org/10.1016/j.cell.2011.07.030

Nakatogawa H. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem 2013; 55: 39-50. http://dx.doi.org/10.1042/bse0550039

Eskelinen EL, Illert AL, Tanaka Y, Schwarzmann G, Blanz J, Von Figura K, et al. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell 2002; 13(9): 3355-68. http://dx.doi.org/10.1091/mbc.E02-02-0114

Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ 2014; 21(3): 348-58. http://dx.doi.org/10.1038/cdd.2013.187

Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12(1): 21-35. http://dx.doi.org/10.1038/nrm3025

Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011; 332(6035): 1317-22. http://dx.doi.org/10.1126/science.1199498

Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13(2): 132-41. http://dx.doi.org/10.1038/ncb2152

Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 2013; 15(4): 406-16. http://dx.doi.org/10.1038/ncb2708

Armour SM, Baur JA, Hsieh SN, Land-Bracha A, Thomas SM, Sinclair DA. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy. Aging (Albany NY) 2009; 1(6): 515-28.

Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8(10): 774-85. http://dx.doi.org/10.1038/nrm2249

Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13(9): 1016-23. http://dx.doi.org/10.1038/ncb2329

Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011; 331(6016): 456-61. http://dx.doi.org/10.1126/science.1196371

Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30(2): 214-26. http://dx.doi.org/10.1016/j.molcel.2008.03.003

Lee JW, Park S, Takahashi Y, Wang HG. The association of AMPK with ULK1 regulates autophagy. PLoS One 2010; 5(11): e15394. http://dx.doi.org/10.1371/journal.pone.0015394

Tripathi DN, Chowdhury R, Trudel LJ, Tee AR, Slack RS, Walker CL, et al. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci U S A 2013; 110(32): E2950-7. http://dx.doi.org/10.1073/pnas.1307736110

Lamy L, Ngo VN, Emre NC, Shaffer AL, 3rd, Yang Y, Tian E, et al. Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell 2013; 23(4): 435-49. http://dx.doi.org/10.1016/j.ccr.2013.02.017

Malik SA, Orhon I, Morselli E, Criollo A, Shen S, Marino G, et al. BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 2011; 30(37): 3918-29. http://dx.doi.org/10.1038/onc.2011.104

Du P, Cao H, Wu HR, Zhu BS, Wang HW, Gu CW, et al. Blocking Bcl-2 leads to autophagy activation and cell death of the HEPG2 liver cancer cell line. Asian Pac J Cancer Prev 2013; 14(10): 5849-54. http://dx.doi.org/10.7314/APJCP.2013.14.10.5849

Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 2008; 15(8): 1318-29. http://dx.doi.org/10.1038/cdd.2008.51

Zhou C, Zhou J, Sheng F, Zhu H, Deng X, Xia B, et al. The heme oxygenase-1 inhibitor ZnPPIX induces non-canonical, Beclin 1-independent, autophagy through p38 MAPK pathway. Acta Biochim Biophys Sin (Shanghai) 2012; 44(10): 815-22. http://dx.doi.org/10.1093/abbs/gms064

Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol 2012; 13(1): 7-12.

McCoy F, Hurwitz J, McTavish N, Paul I, Barnes C, O'Hagan B, et al. Obatoclax induces Atg7-dependent autophagy independent of beclin-1 and BAX/BAK. Cell Death Dis 2010; 1: e108. http://dx.doi.org/10.1038/cddis.2010.86

Naydenov NG, Harris G, Morales V, Ivanov AI. Loss of a membrane trafficking protein alphaSNAP induces non-canonical autophagy in human epithelia. Cell Cycle 2012; 11(24): 4613-25. http://dx.doi.org/10.4161/cc.22885

Scherf T, Frey JU, Frey S. Simultaneous recording of the field-EPSP as well as the population spike in the CA1 region in freely moving rats by using a fixed "double"-recording electrode. J Neurosci Methods 2010; 188(1): 1-6. http://dx.doi.org/10.1016/j.jneumeth.2010.01.020

Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009; 461(7264): 654-8. http://dx.doi.org/10.1038/nature08455

Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 2011; 10(9): 1533-41. http://dx.doi.org/10.1158/1535-7163.MCT-11-0047

Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim Biophys Acta 2009; 1793(9): 1516-23. http://dx.doi.org/10.1016/j.bbamcr.2008.12.013

White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 2009; 15(17): 5308-16. http://dx.doi.org/10.1158/1078-0432.CCR-07-5023

Kimmelman AC. The dynamic nature of autophagy in cancer. Genes Dev 2011; 25(19): 1999-2010. http://dx.doi.org/10.1101/gad.17558811

Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402(6762): 672-6. http://dx.doi.org/10.1038/45257

Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 1999; 59(1): 59-65. http://dx.doi.org/10.1006/geno.1999.5851

Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112(12): 1809-20. http://dx.doi.org/10.1172/JCI20039

Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 2003; 100(25): 15077-82. http://dx.doi.org/10.1073/pnas.2436255100

Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011; 25(8): 795-800. http://dx.doi.org/10.1101/gad.2016211

Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 2011; 193(2): 275-84. http://dx.doi.org/10.1083/jcb.201102031

Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, et al. From Mallory to Mallory-Denk bodies: what, how and why? Exp Cell Res 2007; 313(10): 2033-49. http://dx.doi.org/10.1016/j.yexcr.2007.04.024

Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137(6): 1062-75. http://dx.doi.org/10.1016/j.cell.2009.03.048

Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. J Cell Biol 2010; 190(5): 881-92. http://dx.doi.org/10.1083/jcb.200911078

Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, et al. Autophagy mediates the mitotic senescence transition. Genes Dev 2009; 23(7): 798-803. http://dx.doi.org/10.1101/gad.519709

Moscat J, Diaz-Meco MT. p62: a versatile multitasker takes on cancer. Trends Biochem Sci 2012; 37(6): 230-6. http://dx.doi.org/10.1016/j.tibs.2012.02.008

Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 2009; 137(6): 1001-4. http://dx.doi.org/10.1016/j.cell.2009.05.023

Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 2011; 25(7): 717-29. http://dx.doi.org/10.1101/gad.2016111

Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10(1): 51-64. http://dx.doi.org/10.1016/j.ccr.2006.06.001

Levine B. Cell biology: autophagy and cancer. Nature 2007; 446(7137): 745-7. http://dx.doi.org/10.1038/446745a

Hu YL, DeLay M, Jahangiri A, Molinaro AM, Rose SD, Carbonell WS, et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 2012; 72(7): 1773-83. http://dx.doi.org/10.1158/0008-5472.CAN-11-3831

Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 2008; 15(10): 1572-81. http://dx.doi.org/10.1038/cdd.2008.84

Gordy C, He YW. The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell 2012; 3(1): 17-27. http://dx.doi.org/10.1007/s13238-011-1127-x

Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 2004; 11(4): 448-57. http://dx.doi.org/10.1038/sj.cdd.4401359

Mukubou H, Tsujimura T, Sasaki R, Ku Y. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol 2010; 37(4): 821-8.

Li J, Hou N, Faried A, Tsutsumi S, Kuwano H. Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer 2010; 46(10): 1900-9. http://dx.doi.org/10.1016/j.ejca.2010.02.021

Wang J, Wu GS. Role of autophagy in cisplatin resistance in ovarian cancer cells. J Biol Chem 2014; 289(24): 17163-73. http://dx.doi.org/10.1074/jbc.M114.558288

Chiao MT, Cheng WY, Yang YC, Shen CC, Ko JL. Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy 2013; 9(10): 1509-26. http://dx.doi.org/10.4161/auto.25664

Thorburn A, Thamm DH, Gustafson DL. Autophagy and cancer therapy. Mol Pharmacol 2014; 85(6): 830-8. http://dx.doi.org/10.1124/mol.114.091850

Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 2009; 27(13): 2278-87. http://dx.doi.org/10.1200/JCO.2008.20.0766

O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006; 66(3): 1500-8. http://dx.doi.org/10.1158/0008-5472.CAN-05-2925

Fan QW, Cheng C, Hackett C, Feldman M, Houseman BT, Nicolaides T, et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal 2010; 3(147): ra81. http://dx.doi.org/10.1126/scisignal.2001017

Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 2010; 70(6): 2465-75. http://dx.doi.org/10.1158/0008-5472.CAN-09-2782

Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435(7042): 677-81. http://dx.doi.org/10.1038/nature03579

Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 2007; 26(10): 2527-39. http://dx.doi.org/10.1038/sj.emboj.7601689

Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M, et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 1996; 17(8): 1595-607. http://dx.doi.org/10.1093/carcin/17.8.1595

Gonzalez-Malerva L, Park J, Zou L, Hu Y, Moradpour Z, Pearlberg J, et al. High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci U S A 2011; 108(5): 2058-63. http://dx.doi.org/10.1073/pnas.1018157108

Stebbing J, Filipovic A, Lit LC, Blighe K, Grothey A, Xu Y, et al. LMTK3 is implicated in endocrine resistance via multiple signaling pathways. Oncogene 2013; 32(28): 3371-80. http://dx.doi.org/10.1038/onc.2012.343

Kohli L, Kaza N, Coric T, Byer SJ, Brossier NM, Klocke BJ, et al. 4-Hydroxytamoxifen induces autophagic death through K-Ras degradation. Cancer Res 2013; 73(14): 4395-405. http://dx.doi.org/10.1158/0008-5472.CAN-12-3765

Ertmer A, Huber V, Gilch S, Yoshimori T, Erfle V, Duyster J, et al. The anticancer drug imatinib induces cellular autophagy. Leukemia 2007; 21(5): 936-42.

Zhu K, Dunner K, Jr., McConkey DJ. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 2010; 29(3): 451-62. http://dx.doi.org/10.1038/onc.2009.343

Ganley IG, Wong PM, Gammoh N, Jiang X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 2011; 42(6): 731-43. http://dx.doi.org/10.1016/j.molcel.2011.04.024

Kochl R, Hu XW, Chan EY, Tooze SA. Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 2006; 7(2): 129-45. http://dx.doi.org/10.1111/j.1600-0854.2005.00368.x

Rosich L, Colomer D, Roue G. Autophagy controls everolimus (RAD001) activity in mantle cell lymphoma. Autophagy 2013; 9(1): 115-7. http://dx.doi.org/10.4161/auto.22483

Dickstein RJ, Nitti G, Dinney CP, Davies BR, Kamat AM, McConkey DJ. Autophagy limits the cytotoxic effects of the AKT inhibitor AZ7328 in human bladder cancer cells. Cancer Biol Ther 2012; 13(13): 1325-38. http://dx.doi.org/10.4161/cbt.21793

Lamoureux F, Zoubeidi A. Dual inhibition of autophagy and the AKT pathway in prostate cancer. Autophagy 2013; 9(7): 1119-20. http://dx.doi.org/10.4161/auto.24921

Sasaki K, Tsuno NH, Sunami E, Tsurita G, Kawai K, Okaji Y, et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 2010; 10: 370. http://dx.doi.org/10.1186/1471-2407-10-370

Mujumdar N, Saluja AK. Autophagy in pancreatic cancer: an emerging mechanism of cell death. Autophagy 2010; 6(7): 997-8. http://dx.doi.org/10.4161/auto.6.7.13334

Briceno E, Calderon A, Sotelo J. Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme. Surg Neurol 2007; 67(4): 388-91. http://dx.doi.org/10.1016/j.surneu.2006.08.080

Rangwala R, Chang YC, Hu J, Algazy KM, Evans TL, Fecher LA, et al. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 2014; 10(8): 1391-402. http://dx.doi.org/10.4161/auto.29119

Mahalingam D, Mita M, Sarantopoulos J, Wood L, Amaravadi RK, Davis LE, et al. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 2014; 10(8): 1403-14. http://dx.doi.org/10.4161/auto.29231

Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 2014; 10(8): 1359-68. http://dx.doi.org/10.4161/auto.28984

Gewirtz DA. The four faces of autophagy: implications for cancer therapy. Cancer Res 2014; 74(3): 647-51. http://dx.doi.org/10.1158/0008-5472.CAN-13-2966

Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000; 275(2): 992-8. http://dx.doi.org/10.1074/jbc.275.2.992

Simonsen A, Tooze SA. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol 2009; 186(6): 773-82. http://dx.doi.org/10.1083/jcb.200907014

Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 1998; 23(1): 33-42. http://dx.doi.org/10.1247/csf.23.33

Luiken JJ, Aerts JM, Meijer AJ. The role of the intralysosomal pH in the control of autophagic proteolytic flux in rat hepatocytes. Eur J Biochem 1996; 235(3): 564-73. http://dx.doi.org/10.1111/j.1432-1033.1996.00564.x-i2

Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 2012; 8(2): 200-12. http://dx.doi.org/10.4161/auto.8.2.18554

Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 2014; 26(2): 190-206. http://dx.doi.org/10.1016/j.ccr.2014.06.025

Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 2014; 16(11): 1069-79. http://dx.doi.org/10.1038/ncb3053

Bago R, Malik N, Munson MJ, Prescott AR, Davies P, Sommer E, et al. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem J 2014; 463(3): 413-27. http://dx.doi.org/10.1042/BJ20140889

Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, Fassy F, et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol 2014; 10(12): 1013-9. http://dx.doi.org/10.1038/nchembio.1681

Jardon MA, Rothe K, Bortnik S, Vezenkov L, Jiang X, Young RN, et al. Autophagy: from structure to metabolism to therapeutic regulation. Autophagy 2013; 9(12): 2180-2. http://dx.doi.org/10.4161/auto.26378

Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8(4): 445-544. http://dx.doi.org/10.4161/auto.19496

Tang JY, Hsi E, Huang YC, Hsu NC, Chu PY, Chai CY. High LC3 expression correlates with poor survival in patients with oral squamous cell carcinoma. Hum Pathol 2013; 44(11): 2558-62. http://dx.doi.org/10.1016/j.humpath.2013.06.017

Downloads

Published

2015-01-29

How to Cite

Jia-Jie Shi, & Ling-Hua Meng. (2015). Autophagy in Cancer Therapy: Progress and Issues. Journal of Cancer Research Updates, 4(1),  1–12. https://doi.org/10.6000/1929-2279.2015.04.01.1

Issue

Section

Articles