Cancer Metastasis and Cancer Stem Cells

Authors

  • Huan Liu State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli, Chao Yang District, 100021 Beijing, China
  • Haijuan Wang State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli, Chao Yang District, 100021 Beijing, China
  • Haili Qian State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli, Chao Yang District, 100021 Beijing, China

DOI:

https://doi.org/10.6000/1929-2279.2014.03.04.2

Keywords:

CSCs, cancer metastasis, immune escape, angiogenesis, drug resistance, cancer therapy.

Abstract

 Increasing amounts of evidence have indicated the important role of cancer stem cells (CSCs) in tumorigenesis and relapse. Metastasis is a key biological characteristic of malignant tumors. How cancer cells spread from the original tumor into the circulation and then infiltrate distant organs remains a topic of debate. Moreover, understanding the differences between metastasized and non-metastasized cancer cells is the key to develop strategies to block metastasis. In this review, we summarized the development of the CSC theory related to tumor metastasis over the last two decades.

References

Yi S, Guangqi H, Guoli H. The association of the expression of MTA1, nm23H1 with the invasion, metastasis of ovarian carcinoma. Chin Med Sci J 2003; 18(2): 87-92.

Ramakrishna R, Rostomily R. Seed, soil, and beyond: The basic biology of brain metastasis. Surg Neurol Int 2013; 4(Suppl 4): S256-64.

Mihm MC Jr, Nelson JS. Hypothesis: the metastatic niche theory can elucidate infantile hemangioma development. J Cutan Pathol 2010; 37 Suppl 1: 83-7. http://dx.doi.org/10.1111/j.1600-0560.2010.01521.x

Lin CY, Chen HJ, Huang CC, et al. ADAM9 promotes lung cancer metastases to brain by a plasminogen activator-based pathway. Cancer Res 2014; 24. pii: canres.2995.

Arslan C, Dizdar O, Altundag K. Chemotherapy and biological treatment options in breast cancer patients with brain metastasis: an update. Expert Opin Pharmacother 2014; 15(12): 1643-58. http://dx.doi.org/10.1517/14656566.2014.929664

Izraely S, Sagi-Assif O, Klein A, et al. The Metastatic Microenvironment: Claudin-1 Suppresses the Malignant Phenotype of Melanoma Brain Metastasis. Int J Cancer 2014; 21. http://dx.doi.org/10.1002/ijc.29090

Pakneshan S, Safarpour D, Tavassoli F, et al. Brain metastasis from ovarian cancer: a systematic review. J Neurooncol 2014; 119(1): 1-6. http://dx.doi.org/10.1007/s11060-014-1447-9

Oshita J, Ohba S, Itou Y, et al. A case of lateral ventricle metastasis from gastric carcinoma. No Shinkei Geka 2014; 42(6): 553-9.

Lisanti MP, Martinez-Outschoorn UE, Lin Z, et al. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs "fertilizer". Cell Cycle 2011; 10(15): 2440-9. http://dx.doi.org/10.4161/cc.10.15.16870

Su S, Liu Q, Chen J, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 2014; 25(5): 605-20. http://dx.doi.org/10.1016/j.ccr.2014.03.021

Boyer B, Vallés AM, Edme N. Induction and regulation of epithelial-mesenchymal transitions. Biochem Pharmacol 2000; 60(8): 1091-9. http://dx.doi.org/10.1016/S0006-2952(00)00427-5

Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871-90. http://dx.doi.org/10.1016/j.cell.2009.11.007

Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 2013; 27(20): 2192-206. http://dx.doi.org/10.1101/gad.225334.113

Putz E, Witter K, Offner S, et al. Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res 1999; 59(1): 241-8.

Bryant DM, Stow JL. The ins and outs of E-cadherin trafficking. Trends Cell Biol 2004; 14(8): 427-34. http://dx.doi.org/10.1016/j.tcb.2004.07.007

Cano A, Pérez-Moreno MA, Rodrigo, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2(2): 76-83. http://dx.doi.org/10.1038/35000025

Ikenouchi J, Matsuda M, Furuse M, et al. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 2003; 116(Pt 10): 1959-67. http://dx.doi.org/10.1242/jcs.00389

Zhang H, Liu L, Wang Y, et al. KLF8 involves in TGF-beta-induced EMT and promotes invasion and migration in gastric cancer cells. J Cancer Res Clin Oncol 2013; 139(6): 1033-42. http://dx.doi.org/10.1007/s00432-012-1363-3

Li H, Song F, Chen X, et al. Bmi-1 regulates epithelial-to-mesenchymal transition to promote migration and invasion of breast cancer cells. Int J Clin Exp Pathol 2014; 7(6): 3057-64.

Guo W, Keckesova Z, Donaher JL, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148(5): 1015-28. http://dx.doi.org/10.1016/j.cell.2012.02.008

Mani SA, Guo W, Liao MJ, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4): 704-15. http://dx.doi.org/10.1016/j.cell.2008.03.027

Zhang Z, Dong Z, Lauxen IS, et al. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res 2014; 74(10): 2869-81. http://dx.doi.org/10.1158/0008-5472.CAN-13-2032

Zhao Z, Lu P, Zhang H, et al. Nestin positively regulates the Wnt/ß-catenin pathway and the proliferation, survival, and invasiveness of breast cancer stem cells. Breast Cancer Res 2014; 16(4): 408. http://dx.doi.org/10.1186/s13058-014-0408-8

Zhang XH, Giuliano M, Trivedi MV, et al. Metastasis dormancy in estrogen receptor-positive breast cancer. Clin Cancer Res 2013; 19(23): 6389-97. http://dx.doi.org/10.1158/1078-0432.CCR-13-0838

Kim RS, Avivar-Valderas A, Estrada Y, et al. Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS One 2012; 7(4): e35569. http://dx.doi.org/10.1371/journal.pone.0035569

Allgayer H, Aguirre-Ghiso JA. The urokinase receptor (u-PAR)--a link between tumor cell dormancy and minimal residual disease in bone marrow? APMIS 2008; 116(7-8): 602-14. http://dx.doi.org/10.1111/j.1600-0463.2008.00997.x

Lyu T, Jia N, Wang J, et al. Expression and epigenetic regulation of angiogenesis-related factors during dormancy and recurrent growth of ovarian carcinoma. Epigenetics 2013; 8(12): 1330-46. http://dx.doi.org/10.4161/epi.26675

Romero I, Garrido C, Algarra I, et al. T lymphocytes restrain spontaneous metastases in permanent dormancy. Cancer Res 2014; 74(7): 1958-68. http://dx.doi.org/10.1158/0008-5472.CAN-13-2084

Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell 2013; 155(4): 750-64. http://dx.doi.org/10.1016/j.cell.2013.10.029

Pogány G, Timár F, Oláh J, et al. Role of the basement membrane in tumor cell dormancy and cytotoxic resistance. Oncology 2001; 60(3): 274-81. http://dx.doi.org/10.1159/000055329

Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. Science 1977; 197(4302): 461-3. http://dx.doi.org/10.1126/science.560061

Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730-7. http://dx.doi.org/10.1038/nm0797-730

Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100(7): 3983-8. http://dx.doi.org/10.1073/pnas.0530291100

Chen T, Yang K, Yu J, et al. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res 2012; 22(1): 248-58. http://dx.doi.org/10.1038/cr.2011.109

Liu S, Ginestier C, Ou SJ, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011; 71(2): 614-624. http://dx.doi.org/10.1158/0008-5472.CAN-10-0538

Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interac-tions between cancer stem cells and their niche govern metastatic colonization. Nature 2011; 481(7379): 85-9. http://dx.doi.org/10.1038/nature10694

Zhu H, Wang D, Liu Y, et al. Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133+ pancreatic cancer stem-like cells. Cancer Cell Int 2013; 3(1): 119. http://dx.doi.org/10.1186/1475-2867-13-119

Yan GN, Yang L, Lv YF, et al. Endothelial Cells Promote Stem-like Phenotype of Glioma Cells through Activating Hedgehog Pathway. J Pathol 2014; 234(1): 11-22. http://dx.doi.org/10.1002/path.4349

Todaro M, Gaggianesi M, Catalano V, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 2014; 14(3): 342-56. http://dx.doi.org/10.1016/j.stem.2014.01.009

Rodrigues SM, Andrade MO, Gomes AP, et al. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp Bot 2006; 57(9): 1909-18. http://dx.doi.org/10.1093/jxb/erj132

Charafe-Jauffret E, Ginestier C, Iovino F, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 2009; 69(4): 1302-13. http://dx.doi.org/10.1158/0008-5472.CAN-08-2741

Nolte SM, Venugopal C, McFarlane N, et al. A cancer stem cell model for studying brain metastases from primary lung cancer. J Natl Cancer Inst 2013; 105(8): 551-62. http://dx.doi.org/10.1093/jnci/djt022

Niess H, Camaj P, Renner A, et al. Side population cells of pancreatic cancer show characteristics of cancer stem cells responsible for resistance and metastasis. Target Oncol 2014; Jun 22.

Okano M, Konno M, Kano Y, et al. Human colorectal CD24+ cancer stem cells are susceptible to epithelial-mesenchymal transition. Int J Oncol 2014; 45(2): 575-80.

Monteiro J, Fodde R. Cancer stemness and metastasis: therapeutic consequences and perspectives. Eur J Cancer 2010; 46(7): 1198-203. http://dx.doi.org/10.1016/j.ejca.2010.02.030

Chhabra R, Saini N. microRNAs in cancer stem cells: current status and future directions. Tumour Biol 2014; Jun 26.

Huang S, Chen L. miR-888 regulates side population properties and cancer metastasis in breast cancer cells. Biochem Biophys Res Commun 2014; pii: S0006-291X(14)00876-6.

Okuda H, Xing F, Pandey PR, et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 2013; 73(4): 1434-44. http://dx.doi.org/10.1158/0008-5472.CAN-12-2037

Bullock MD, Sayan AE, Packham GK, et al. MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol Cell 2012; 104(1): 3-12. http://dx.doi.org/10.1111/boc.201100115

Han M, Wang Y, Liu M, et al. MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1α expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci 2012; 103(6): 1058-64. http://dx.doi.org/10.1111/j.1349-7006.2012.02281.x

Wang Z, Wang B, Shi Y, et al. Oncogenic miR-20a and miR-106a enhance the invasiveness of human glioma stem cells by directly targeting TIMP-2. Oncogene 2014 Apr 7. doi: 10.1038/onc.2014.75.

Fantozzi A, Gruber DC, Pisarsky L, et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res 2014; 74(5): 1566-75. http://dx.doi.org/10.1158/0008-5472.CAN-13-1641

Cao B, Jia J, Ma L, et al. Recombinant human endostatin could eliminate the pro-angiogenesis priority of SP cells sorted from non-small cell lung cancer cells. Clin Transl Oncol 2012; 14(8): 575-585. http://dx.doi.org/10.1007/s12094-012-0844-9

Tang KH, Ma S, Lee TK, et al. CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology 2012; 55(3): 807-20. http://dx.doi.org/10.1002/hep.24739

Luo Y, Lan L, Jiang YG, et al. Epithelial-mesenchymal transition and migration of prostate cancer stem cells is driven by cancer-associated fibroblasts in an HIF-1α/β-catenin-dependent pathway. Mol Cells 2013; 36(2): 138-44. http://dx.doi.org/10.1007/s10059-013-0096-8

Ping YF, Yao XH, Jiang JY, et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol 2011; 224(3): 344-54. http://dx.doi.org/10.1002/path.2908

Bruttel VS, Wischhusen J. Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front Immunol 2014; 5: 360. http://dx.doi.org/10.3389/fimmu.2014.00360

Wu A, Wiesner S, Xiao J, Ericson K, et al. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J Neurooncol 2007; 83(2): 121-31. http://dx.doi.org/10.1007/s11060-006-9265-3

Chikamatsu K, Takahashi G, Sakakura K, et al. Immunoregulatory properties of CD44+ cancer stem-like cells in squamous cell carcinoma of the head and neck. Head Neck 2011; 33(2): 208-15. http://dx.doi.org/10.1002/hed.21420

Cortes-Dericks L, Froment L, Boesch R, et al. Cisplatin-resistant cells in malignant pleural mesothelioma cell lines show ALDH(high)CD44(+) phenotype and sphere-forming capacity. BMC Cancer 2014; 14: 304. http://dx.doi.org/10.1186/1471-2407-14-304

Wilson BJ, Saab KR, Ma J, et al. ABCB5 Maintains Melanoma-Initiating Cells through a Proinflammatory Cyto-kine Signaling Circuit. Cancer Res 2014; 74(15): 4196-207. http://dx.doi.org/10.1158/0008-5472.CAN-14-0582

Zhang G, Wang Z, Luo W, et al. Expression of Potential Cancer Stem Cell Marker ABCG2 is Associated with Malignant Behaviors of Hepatocellular Carcinoma. Gastroenterol Res Pract 2013; 2013: 782581. http://dx.doi.org/10.1155/2013/782581

Faber A, Hoermann K, Stern-Straeter J, et al. Functional effects of SDF-1α on a CD44(+) CXCR4(+) squamous cell carcinoma cell line as a model for interactions in the cancer stem cell niche. Oncol Rep 2013; 29(2): 579-84.

Faber A, Aderhold C, Goessler UR, et al. Interaction of a CD44+ head and neck squamous cell carcinoma cell line with a stromal cell-derived factor-1-expressing supportive niche: An in vitro model. Oncol Lett 2014; 7(1): 82-86.

Hu J, Qiu M, Jiang F, et al. MiR-145 regulates cancer stem-like properties and epithelial-to-mesenchymal transition in lung adenocarcinoma-initiating cells. Tumour Biol 2014; Jun 6.

Dou J, He XF, Cao WH, et al. Overexpression of microRna-200c in CD44+CD133+ CSCs inhibits the cellular migratory and invasion as well as tumorigenicity in mice. Cell Mol Biol (Noisy-le-grand) 2013; Suppl 59: OL1861-8.

Chiu CC, Lee LY, Li YC, et al. Grp78 as a therapeutic target for refractory head-neck cancer with CD24(-)CD44(+) stemness phenotype. Cancer Gene Ther 2013; 20(11): 606-15. http://dx.doi.org/10.1038/cgt.2013.64

Deng R, Wang X, Liu Y, et al. A new gamboge derivative compound 2 inhibits cancer stem-like cells via suppressing EGFR tyrosine phosphorylation in head and neck squamous cell carcinoma. J Cell Mol Med 2013; 17(11): 1422-33. http://dx.doi.org/10.1111/jcmm.12129

Xing F, Kobayashi A, Okuda H, et al. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med 2013; 5(3): 384-96. http://dx.doi.org/10.1002/emmm.201201623

Downloads

Published

2014-12-29

How to Cite

Huan Liu, Haijuan Wang, & Haili Qian. (2014). Cancer Metastasis and Cancer Stem Cells. Journal of Cancer Research Updates, 3(4),  182–190. https://doi.org/10.6000/1929-2279.2014.03.04.2

Issue

Section

Articles