ABC Transporters: Maintenance of the Cancer Stem Cell Phenotype

Authors

  • Wei Zhang State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
  • Li-Wu Fu State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China

DOI:

https://doi.org/10.6000/1929-2279.2014.03.01.1

Keywords:

ABC transporters, cancer stem-like cells (CSCs), multidrug resistance (MDR), self-renewal,pluripotency, side population (SP), tumorigenicity.

Abstract

 The poor therapeutic response to anti-cancer treatment and inferior prognosis of carcinoma primarily result from cancer stem cells (CSCs), which initiate and maintain tumors. Recent studies have demonstrated that the molecular phenotype of CSCs mainly consists of multidrug resistance (MDR), self-renewal, multi-lineage differentiation potential (pluripotency) and tumorigenicity. Intriguingly, ATP-binding cassette (ABC) membrane transporters are highly expressed in CSCs compared to non-CSCs, and recent evidence has highlighted a link between ABC transporters and the CSC phenotype. Understanding the relationship between CSCs and ABC transporters is important as this could lead to the development of more efficacious treatment regimens. Thus, in this article, we will mainly review the relationships between ABC transporters and the phenotype of CSCs.

References

O'Shaughnessy JA, et al. Retroviral mediated transfer of the human multidrug resistance gene (MDR-1) into hematopoietic stem cells during autologous transplantation after intensive chemotherapy for metastatic breast cancer. Hum Gene Ther 1994; 5(7): 891-911. http://dx.doi.org/10.1089/hum.1994.5.7-891

de Figueiredo-Pontes LL, et al. Determination of P-glycoprotein, MDR-related protein 1, breast cancer resistance protein, and lung-resistance protein expression in leukemic stem cells of acute myeloid leukemia. Cytometry B Clin Cytom 2008; 74(3): 163-8. http://dx.doi.org/10.1002/cyto.b.20403

Albarenque SM, Zwacka RM, Mohr A. Both human and mouse mesenchymal stem cells promote breast cancer metastasis. Stem Cell Res 2011; 7(2): 163-71. http://dx.doi.org/10.1016/j.scr.2011.05.002

Seol HJ, et al. Genetically engineered human neural stem cells with rabbit carboxyl esterase can target brain metastasis from breast cancer. Cancer Lett 2011; 311(2): 152-9. http://dx.doi.org/10.1016/j.canlet.2011.07.001

Yang L, et al. Gastric cancer stem-like cells possess higher capability of invasion and metastasis in association with a mesenchymal transition phenotype. Cancer Lett 2011; 310(1): 46-52.

Mulholland DJ, et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res 2012; 72(7): 1878-89. http://dx.doi.org/10.1158/0008-5472.CAN-11-3132

Chiba T, et al. Cancer stem cells in hepatocellular carcinoma: Recent progress and perspective. Cancer Lett 2009; 286(2): 145-53. http://dx.doi.org/10.1016/j.canlet.2009.04.027

Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene 2004; 23(43): 7274-82. http://dx.doi.org/10.1038/sj.onc.1207947

Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003; 55(1): 3-29. http://dx.doi.org/10.1016/S0169-409X(02)00169-2

Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2(1): 48-58. http://dx.doi.org/10.1038/nrc706

Glavinas H, et al. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 2004; 1(1): 27-42. http://dx.doi.org/10.2174/1567201043480036

Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics 2009; 3(3): 281-90. http://dx.doi.org/10.1186/1479-7364-3-3-281

Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001; 11(7): 1156-66. http://dx.doi.org/10.1101/gr.GR-1649R

Yu M, Ocana A, Tannock IF. Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit? Cancer Metastasis Rev 2013; 32(1-2): 211-27. http://dx.doi.org/10.1007/s10555-012-9402-8

Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 2008; 9(1): 105-27. http://dx.doi.org/10.2217/14622416.9.1.105

Hardwick LJ, Velamakanni S, van Veen HW. The emerging pharmacotherapeutic significance of the breast cancer resistance protein (ABCG2). Br J Pharmacol 2007; 151(2): 163-74. http://dx.doi.org/10.1038/sj.bjp.0707218

Calcagno AM, et al. ABC drug transporters as molecular targets for the prevention of multidrug resistance and drug-drug interactions. Curr Drug Deliv 2007; 4(4): 324-33. http://dx.doi.org/10.2174/156720107782151241

Frank NY, Frank MH. ABCB5 gene amplification in human leukemia cells. Leuk Res 2009; 33(10): 1303-5. http://dx.doi.org/10.1016/j.leukres.2009.04.035

Schatton T, et al. Identification of cells initiating human melanomas. Nature 2008; 451(7176): 345-9. http://dx.doi.org/10.1038/nature06489

Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 2005; 45(8): 872-7. http://dx.doi.org/10.1177/0091270005276905

Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol 2005; 205(2): 275-92. http://dx.doi.org/10.1002/path.1706

Andreeff M, Konopleva M. Mechanisms of drug resistance in AML. Cancer Treat Res 2002; 112: 237-62. http://dx.doi.org/10.1007/978-1-4615-1173-1_12

Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385-427. http://dx.doi.org/10.1146/annurev.bi.62.070193.002125

Fletcher JI, et al. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 2010; 10(2): 147-56. http://dx.doi.org/10.1038/nrc2789

Ambudkar SV, et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999; 39: 361-98. http://dx.doi.org/10.1146/annurev.pharmtox.39.1.361

Gerlach JH, et al. P-glycoprotein in human sarcoma: evidence for multidrug resistance. J Clin Oncol 1987; 5(9): 1452-60.

Kuwazuru Y, et al. Expression of the multidrug transporter, P-glycoprotein, in acute leukemia cells and correlation to clinical drug resistance. Cancer 1990; 66(5): 868-73. http://dx.doi.org/10.1002/1097-0142(19900901)66:5<868::AID-CNCR2820660510>3.0.CO;2-Z

Clarke MF, et al. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66(19): 9339-44. http://dx.doi.org/10.1158/0008-5472.CAN-06-3126

Szotek PP, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA 2006; 103(30): 11154-9. http://dx.doi.org/10.1073/pnas.0603672103

Hirschmann-Jax C, et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004; 101(39): 14228-33. http://dx.doi.org/10.1073/pnas.0400067101

Ho MM, et al. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67(10): 4827-33. http://dx.doi.org/10.1158/0008-5472.CAN-06-3557

Wang J, et al. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 2007; 67(8): 3716-24. http://dx.doi.org/10.1158/0008-5472.CAN-06-4343

Costello RT, et al. Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 2000; 60(16): 4403-11.

Jiang X, et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21(5): 926-35.

Haraguchi N, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 2006; 24(3): 506-13. http://dx.doi.org/10.1634/stemcells.2005-0282

Raaijmakers MH, et al. Breast cancer resistance protein in drug resistance of primitive CD34+38- cells in acute myeloid leukemia. Clin Cancer Res 2005; 11(6): 2436-44. http://dx.doi.org/10.1158/1078-0432.CCR-04-0212

Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-84. http://dx.doi.org/10.1038/nrc1590

Zhou WJ, et al. Crizotinib (PF-02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P-glycoprotein. Br J Pharmacol 2012; 166(5): 1669-83. http://dx.doi.org/10.1111/j.1476-5381.2012.01849.x

Jovelet C, et al. Inhibition of P-glycoprotein functionality by vandetanib may reverse cancer cell resistance to doxorubicin. Eur J Pharm Sci 2012; 46(5): 484-91. http://dx.doi.org/10.1016/j.ejps.2012.03.012

Shen Y, et al. Mitochondrial localization of P-glycoprotein in the human breast cancer cell line MCF-7/ADM and its functional characterization. Oncol Rep 2012; 27(5): 1535-40.

Gibalova L, et al. P-glycoprotein depresses cisplatin sensitivity in L1210 cells by inhibiting cisplatin-induced caspase-3 activation. Toxicol In Vitro 2012; 26(3): 435-44. http://dx.doi.org/10.1016/j.tiv.2012.01.014

Sulova Z, et al. Does any relationship exist between P-glycoprotein-mediated multidrug resistance and intracellular calcium homeostasis. Gen Physiol Biophys 2009; 28 Spec No Focus: F89-95.

Barancik M, et al. Reversal effects of several Ca(2+)-entry blockers, neuroleptics and local anaesthetics on P-glycoprotein-mediated vincristine resistance of L1210/VCR mouse leukaemic cell line. Drugs Exp Clin Res 1994; 20(1): 13-8.

Witkowski JM, Miller RA. Calcium signal abnormalities in murine T lymphocytes that express the multidrug transporter P-glycoprotein. Mech Ageing Dev 1999; 107(2): 165-80. http://dx.doi.org/10.1016/S0047-6374(98)00147-X

Gutheil JC, et al. Alterations in Ca2+ transport ATPase and P-glycoprotein expression can mediate resistance to thapsigargin. J Biol Chem 1994; 269(11): 7976-81.

Wagner-Souza K, et al. Resistance to thapsigargin-induced intracellular calcium mobilization in a multidrug resistant tumour cell line. Mol Cell Biochem 2003; 252(1-2): 109-16. http://dx.doi.org/10.1023/A:1025586225941

Munoz M, et al. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life 2007; 59(12): 752-7. http://dx.doi.org/10.1080/15216540701736285

Cole SP, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992; 258(5088): 1650-4. http://dx.doi.org/10.1126/science.1360704

Deeley RG, Cole SP. Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 2006; 580(4): 1103-11. http://dx.doi.org/10.1016/j.febslet.2005.12.036

Marques DS, et al. Relationships between multidrug resistance (MDR) and stem cell markers in human chronic myeloid leukemia cell lines. Leuk Res 2010; 34(6): 757-62. http://dx.doi.org/10.1016/j.leukres.2009.11.004

Vesuna F, et al. Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia 2009; 11(12): 1318-28.

Pajic M, et al. The role of the multidrug resistance-associated protein 1 gene in neuroblastoma biology and clinical outcome. Cancer Lett 2005; 228(1-2): 241-6. http://dx.doi.org/10.1016/j.canlet.2005.01.060

Haber M, et al. Altered expression of the MYCN oncogene modulates MRP gene expression and response to cytotoxic drugs in neuroblastoma cells. Oncogene 1999; 18(17): 2777-82. http://dx.doi.org/10.1038/sj.onc.1202859

Kuss BJ, et al. In vitro and in vivo downregulation of MRP1 by antisense oligonucleotides: a potential role in neuroblastoma therapy. Int J Cancer 2002; 98(1): 128-33. http://dx.doi.org/10.1002/ijc.10159

Doyle LA, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998; 95(26): 15665-70. http://dx.doi.org/10.1073/pnas.95.26.15665

Zhou S, et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci USA 2002; 99(19): 12339-44. http://dx.doi.org/10.1073/pnas.192276999

Doyle L, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22(47): 7340-58. http://dx.doi.org/10.1038/sj.onc.1206938

Bhatia P, et al. Breast cancer resistance protein (BCRP/ABCG2) localises to the nucleus in glioblastoma multiforme cells. Xenobiotica 2012; 42(8): 748-55. http://dx.doi.org/10.3109/00498254.2012.662726

Lou H, Dean M. Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 2007; 26(9): 1357-60. http://dx.doi.org/10.1038/sj.onc.1210200

Sulova Z, et al. The presence of P-glycoprotein in L1210 cells directly induces down-regulation of cell surface saccharide targets of concanavalin A. Anticancer Res 30(9): 3661-8.

Luquain-Costaz C, et al. Bis(monoacylglycero)phosphate accumulation in macrophages induces intracellular cholesterol redistribution, attenuates liver-X receptor/ATP-Binding cassette transporter A1/ATP-binding cassette transporter G1 pathway, and impairs cholesterol efflux. Arterioscler Thromb Vasc Biol 33(8): 1803-11.

Molofsky AV, Pardal R, Morrison SJ. Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 2004; 16(6): 700-7. http://dx.doi.org/10.1016/j.ceb.2004.09.004

Oesterle EC, et al. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 2008; 9(1): 65-89. http://dx.doi.org/10.1007/s10162-007-0106-7

Episkopou V. SOX2 functions in adult neural stem cells. Trends Neurosci 2005; 28(5): 219-21. http://dx.doi.org/10.1016/j.tins.2005.03.003

Dong Z, et al. Increased expression of OCT4 is associated with low differentiation and tumor recurrence in human hepatocellular carcinoma. Pathol Res Pract 2012; 208(9): 527-33. http://dx.doi.org/10.1016/j.prp.2012.05.019

Tsai CC, et al. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 2012; 47(2): 169-82. http://dx.doi.org/10.1016/j.molcel.2012.06.020

Oka M, et al. Differential role for transcription factor Oct4 nucleocytoplasmic dynamics in somatic cell reprogramming and self-renewal of embryonic stem cells. J Biol Chem 2013; 288(21): 15085-97. http://dx.doi.org/10.1074/jbc.M112.448837

Tsai CC, et al. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 47(2): 169-82.

da Cunha JM, et al. Pluripotent stem cell transcription factors during human odontogenesis. Cell Tissue Res 353(3): 435-41.

da Cunha JM, et al. Pluripotent stem cell transcription factors during human odontogenesis. Cell Tissue Res 2013; 353(3): 435-41. http://dx.doi.org/10.1007/s00441-013-1658-y

Varlakhanova NV, et al. myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 2010; 80(1): 9-19. http://dx.doi.org/10.1016/j.diff.2010.05.001

Wang Y, et al. Bmi-1 regulates self-renewal, proliferation and senescence of human fetal neural stem cells in vitro. Neurosci Lett 2010; 476(2): 74-8. http://dx.doi.org/10.1016/j.neulet.2010.04.006

Lukacs RU, et al. Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 2010; 7(6): 682-93. http://dx.doi.org/10.1016/j.stem.2010.11.013

Raaphorst FM, Self-renewal of hematopoietic and leukemic stem cells: a central role for the Polycomb-group gene Bmi-1. Trends Immunol 2003; 24(10): 522-4. http://dx.doi.org/10.1016/S1471-4906(03)00241-2

Iwama A, et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 2004; 21(6): 843-51. http://dx.doi.org/10.1016/j.immuni.2004.11.004

Iwama A, et al. Epigenetic regulation of hematopoietic stem cell self-renewal by polycomb group genes. Int J Hematol 2005; 81(4): 294-300. http://dx.doi.org/10.1532/IJH97.05011

Nakauchi H, et al. Polycomb gene product Bmi-1 regulates stem cell self-renewal. Ernst Schering Res Found Workshop 2005; (54): 85-100.

Gong H, Zhang YC, Liu WL. [Regulatory effects of Bmi-1 gene on self-renewal of hematopoietic stem cells--review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2006; 14(2): 413-5.

Oguro H. [Regulation of hematopoietic stem cell self-renewal by a polycomb group gene product, Bmi-1]. Rinsho Ketsueki 2006; 47(5): 363-70.

Balenci L, van der Kooy D. Notch signaling induces retinal stem-like properties in perinatal neural retina progenitors and promotes symmetric divisions in adult retinal stem cells. Stem Cells Dev 2013;

Zheng Y, et al. A rare population of CD24(+)ITGB4(+) Notch(hi) cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell 2013; 24(1): 59-74. http://dx.doi.org/10.1016/j.ccr.2013.05.021

Heidel FH, Mar BG, Armstrong SA. Self-renewal related signaling in myeloid leukemia stem cells. Int J Hematol 2011; 94(2): 109-17. http://dx.doi.org/10.1007/s12185-011-0901-0

Cai C, Zhu X. The Wnt/beta-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer. Mol Med Rep 2012; 5(5): 1191-6.

Huang J, et al. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 2012; 18(12): 1778-85. http://dx.doi.org/10.1038/nm.2984

Merrill BJ. Wnt pathway regulation of embryonic stem cell self-renewal. Cold Spring Harb Perspect Biol 2012; 4(9): a007971;

Park JS, et al. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev Cell 2012; 23(3): 637-51. http://dx.doi.org/10.1016/j.devcel.2012.07.008

Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980; 287(5785): 795-801. http://dx.doi.org/10.1038/287795a0

Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001; 15(23): 3059-87. http://dx.doi.org/10.1101/gad.938601

Keshet GI, et al. MDR1 expression identifies human melanoma stem cells. Biochem Biophys Res Commun 2008; 368(4): 930-6. http://dx.doi.org/10.1016/j.bbrc.2008.02.022

Sims-Mourtada J, et al. Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene 2007; 26(38): 5674-9. http://dx.doi.org/10.1038/sj.onc.1210356

Sims-Mourtada J, et al. Hedgehog: an attribute to tumor regrowth after chemoradiotherapy and a target to improve radiation response. Clin Cancer Res 2006; 12(21): 6565-72. http://dx.doi.org/10.1158/1078-0432.CCR-06-0176

Santisteban M. ABC transporters as molecular effectors of pancreatic oncogenic pathways: the Hedgehog-GLI model. J Gastrointest Cancer 2010; 41(3): 153-8. http://dx.doi.org/10.1007/s12029-010-9144-1

Zeng H, et al. Lack of ABCG2 expression and side population properties in human pluripotent stem cells. Stem Cells 2009; 27(10): 2435-45. http://dx.doi.org/10.1002/stem.192

Susanto J, et al. Porphyrin homeostasis maintained by ABCG2 regulates self-renewal of embryonic stem cells. PLoS One 2008; 3(12): e4023;

Lobo NA, et al. The biology of cancer stem cells. Annu Rev Cell Dev Biol 2007; 23: 675-99. http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104154

Loh YH, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38(4): 431-40. http://dx.doi.org/10.1038/ng1760

Masui S, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 2007; 9(6): 625-35. http://dx.doi.org/10.1038/ncb1589

Zabierowski SE, Herlyn M. Learning the ABCs of melanoma-initiating cells. Cancer Cell 2008; 13(3): 185-7. http://dx.doi.org/10.1016/j.ccr.2008.02.015

Juuti-Uusitalo K, et al. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells. PLoS One 2012; 7(1): e30089;

Barbet R, et al. Expression of the 49 human ATP binding cassette (ABC) genes in pluripotent embryonic stem cells and in early- and late-stage multipotent mesenchymal stem cells: possible role of ABC plasma membrane transporters in maintaining human stem cell pluripotency. Cell Cycle 2012; 11(8): 1611-20. http://dx.doi.org/10.4161/cc.20023

Islam MO, et al. Characterization of ABC transporter ABCB1 expressed in human neural stem/progenitor cells. FEBS Lett 2005; 579(17): 3473-80. http://dx.doi.org/10.1016/j.febslet.2005.05.019

Cheepala S, et al. Cyclic nucleotide compartmentalization: contributions of phosphodiesterases and ATP-binding cassette transporters. Annu Rev Pharmacol Toxicol 2013; 53: 231-53. http://dx.doi.org/10.1146/annurev-pharmtox-010611-134609

Calcagno AM, et al. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst 2010; 102(21): 1637-52. http://dx.doi.org/10.1093/jnci/djq361

Landreville S, et al. ABCB1 identifies a subpopulation of uveal melanoma cells with high metastatic propensity. Pigment Cell Melanoma Res 2011; 24(3): 430-7. http://dx.doi.org/10.1111/j.1755-148X.2011.00841.x

Wilson BJ, et al. ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients. Cancer Res 2011; 71(15): 5307-16. http://dx.doi.org/10.1158/0008-5472.CAN-11-0221

Grimm M, et al. ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma. Eur J Cancer 2012; 48(17): 3186-97. http://dx.doi.org/10.1016/j.ejca.2012.05.027

Lin JY, et al. Genetically determined ABCB5 functionality correlates with pigmentation phenotype and melanoma risk. Biochem Biophys Res Commun 2013; 436(3): 536-42. http://dx.doi.org/10.1016/j.bbrc.2013.06.006

Polireddy K, et al. Functional significance of the ATP-binding cassette transporter B6 in hepatocellular carcinoma. Mol Oncol 2011; 5(5): 410-25. http://dx.doi.org/10.1016/j.molonc.2011.07.005

Zhang Z, et al. The ABCC4 gene is a promising target for pancreatic cancer therapy. Gene 2012; 491(2): 194-9. http://dx.doi.org/10.1016/j.gene.2011.09.029

Bleau AM, et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 2009; 4(3): 226-35. http://dx.doi.org/10.1016/j.stem.2009.01.007

Li XX, et al. Characterization of cancer stem-like cells derived from a side population of a human gallbladder carcinoma cell line, SGC-996. Biochem Biophys Res Commun 419(4): 728-34.

Luo LJ, et al. [Analysis of the characteristics of side population cells in the human ovarian cancer cell line OVCAR-3]. Zhonghua Fu Chan Ke Za Zhi 47(4): 281-5.

Zhang H, et al. Identification of ABCG2(+) cells in nasopharyngeal carcinoma cells. Oncol Rep 27(4): 1177-87.

Patrawala L, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 2005; 65(14): 6207-19. http://dx.doi.org/10.1158/0008-5472.CAN-05-0592

Downloads

Published

2014-01-02

How to Cite

Wei Zhang, & Li-Wu Fu. (2014). ABC Transporters: Maintenance of the Cancer Stem Cell Phenotype. Journal of Cancer Research Updates, 3(1), 1–10. https://doi.org/10.6000/1929-2279.2014.03.01.1

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.