The Role of BRAF Gene in Cancer: Literature Review and Future Directions

The Role of BRAF Gene in Cancer: Literature Review and Future Directions

Authors

  • Ricardo Hsieh Associate Research Scientist, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil

DOI:

https://doi.org/10.30683/1929-2279.2020.09.03

Keywords:

BRAF, MAPK, V600E, Mutation, Cancer, Therapy.

Abstract

The BRAF gene encodes a protein belonging to the RAF family of serine/threonine protein kinases. This protein plays an important role in regulating the MAP kinase signaling pathway, which is involved in cellular development, differentiation, division, proliferation, secretion, inflammatory responses and apoptosis in mammalian cells.

Since 2002, the mutation of valine 600 to glutamic acid (V600E) is the most prevalent, and it is found to be recurrent in many cancer types. It is frequently identified cancer-causing mutation in melanoma, colorectal cancer, thyroid carcinoma, non-small cell lung carcinoma, hairy cell leukemia, non-Hodgkin lymphoma, glioneuronal tumors, hepatocellular carcinoma, adenocarcinoma of lung, ovarian cancer, and also others malignancies and some cancer metastasis.

In the early 1990s, some researchers began studying MAP kinase signaling pathway involved in controlling cell growth and its role in cancer, and it helped identify targets for new classes of cancer therapy. Later BRAF mutation was found in over 50% of melanomas. The overactive BRAF protein expression looked like an attractive drug target. Elucidating the detailed molecular structure of the mutant protein helped pharmaceutical companies developed selective inhibitors of mutated BRAF, including Vemurafenib and Dabrafenib, which have been approved to treat melanoma by the Food and Drug Administration (FDA).

In addition, there is a growing number of targeted agents that are being evaluated to treat various BRAF-mutant advanced cancer (especially melanoma, lung, thyroid and colorectal cancer), including other RAF kinase inhibitors and/or MEK inhibitors.

The standard therapy of inhibition of BRAF mutation in advanced melanoma and/or others malignancies, improved clinical benefit compared to chemotherapy. In the meantime, intrinsic and acquired resistances are still key challenges by using these drugs. The future research is heading to understand the mechanisms of the resistance, therefore it will help us to understand diseases biology and continuously bringing new therapeutic strategies for melanoma and/or others malignancies, including other drugs combination and next-generation of BRAF inhibitors.

References

Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer [Internet] 2014; 14(7): 455-67. https://doi.org/10.1038/nrc3760 DOI: https://doi.org/10.1038/nrc3760

Ducreux M, Chamseddine A, Laurent-Puig P, Smolenschi C, Hollebecque A, Dartigues P, et al. Molecular targeted therapy of BRAF -mutant colorectal cancer. Ther Adv Med Oncol [Internet] 2019; 11(7): 175883591985649. https://doi.org/10.1177/1758835919856494 DOI: https://doi.org/10.1177/1758835919856494

Zaman, Wu, Bivona. Targeting Oncogenic BRAF: Past, Present, and Future. Cancers (Basel) 2019; 11(8): 1197. https://doi.org/10.3390/cancers11081197 DOI: https://doi.org/10.3390/cancers11081197

Takahashi H, Takahashi M, Ohnuma S, Unno M, Yoshino Y, Ouchi K, et al. microRNA-193a-3p is specifically down-regulated and acts as a tumor suppressor in BRAF-mutated colorectal cancer. BMC Cancer 2017; 17(1): 1-14. https://doi.org/10.1186/s12885-017-3739-x DOI: https://doi.org/10.1186/s12885-017-3739-x

Chat-Uthai N, Vejvisithsakul P, Udommethaporn S, Meesiri P, Danthanawanit C, Wongchai Y, et al. Development of ultra-short PCR assay to reveal BRAF V600 mutation status in Thai colorectal cancer tissues. PLoS One 2018; 13(6): 1-16. https://doi.org/10.1371/journal.pone.0198795 DOI: https://doi.org/10.1371/journal.pone.0198795

Oikonomou E, Koustas E, Goulielmaki M, Pintzas A. BRAF vs RAS oncogenes: Are mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget 2014; 5(23): 11752-77. https://doi.org/10.18632/oncotarget.2555 DOI: https://doi.org/10.18632/oncotarget.2555

Griffin M, Scotto D, Josephs DH, Mele S, Crescioli S, Bax HJ, et al. BRAF inhibitors : resistance and the promise of combination treatments for melanoma braf inhibitors and resistance mechanisms in patients with. Oncotarget 2017; 8(44): 78174-92. https://doi.org/10.18632/oncotarget.19836 DOI: https://doi.org/10.18632/oncotarget.19836

Allen A, Qin ACR, Raj N, Wang J, Uddin S, Yao Z, et al. Rare BRAF mutations in pancreatic neuroendocrine tumors may predict response to RAF and MEK inhibition. PLoS One 2019; 14(6): 1-16. https://doi.org/10.1371/journal.pone.0217399 DOI: https://doi.org/10.1371/journal.pone.0217399

Arozarena I, Wellbrock C. Overcoming resistance to BRAF inhibitors. Ann Transl Med 2017; 5(19): 1-12. https://doi.org/10.21037/atm.2017.06.09 DOI: https://doi.org/10.21037/atm.2017.06.09

Wang J, Yao Z, Jonsson P, Allen AN, Qin ACR, Uddin S, et al. A Secondary Mutation in BRAF Confers Resistance to RAF Inhibition in a BRAF V600E -Mutant Brain Tumor. Cancer Discov [Internet] 2018; 8(9): 1130-41. https://doi.org/10.1158/1535-7163.TARG-17-A129 DOI: https://doi.org/10.1158/2159-8290.CD-17-1263

Ko T, Sharma R, Li S. Genome-wide screening identifies novel genes implicated in cellular sensitivity to BRAFV600E expression. Oncogene [Internet] 2019. https://doi.org/10.1038/s41388-019-1022-0 DOI: https://doi.org/10.1038/s41388-019-1022-0

Marranci A, Jiang Z, Vitiello M, Guzzolino E, Comelli L, Sarti S, et al. The landscape of BRAF transcript and protein variants in human cancer. Mol Cancer 2017; 16(1): 5-10. https://doi.org/10.1186/s12943-017-0645-4 DOI: https://doi.org/10.1186/s12943-017-0645-4

Röck R, Mayrhofer JE, Torres-Quesada O, Enzler F, Raffeiner A, Raffeiner P, et al. BRAF inhibitors promote intermediate BRAF(V600E) conformations and binary interactions with activated RAS. Sci Adv 2019; 5(8): eaav8463. https://doi.org/10.1126/sciadv.aav8463 DOI: https://doi.org/10.1126/sciadv.aav8463

Cheng L, Lopez-Beltran A, Massari F, Maclennan GT, Montironi R. Molecular testing for BRAF mutations to inform melanoma treatment decisions: A move toward precision medicine. Mod Pathol [Internet] 2018; 31(1): 24-38. https://doi.org/10.1038/modpathol.2017.104 DOI: https://doi.org/10.1038/modpathol.2017.104

Colombino M, Paliogiannis P, Cossu A, De Re V, Miolo G, Botti G, et al. BRAF Mutations and Dysregulation of the MAP Kinase Pathway Associated to Sinonasal Mucosal Melanomas. J Clin Med 2019; 8(10): 1577. https://doi.org/10.3390/jcm8101577 DOI: https://doi.org/10.3390/jcm8101577

Olbryt M. Molecular background of skin melanoma development and progression: Therapeutic implications. Postep Dermatologii i Alergol 2019; 36(2): 129-38. https://doi.org/10.5114/ada.2019.84590 DOI: https://doi.org/10.5114/ada.2019.84590

Hsieh R, Nico MMS, Coutinho-Camillo CM, Buim ME, Sangueza M, Lourenço SV. The CDKN2A and MAP kinase pathways: Molecular roads to primary oral mucosal melanoma. Am J Dermatopathol 2013; 35(2). https://doi.org/10.1097/DAD.0b013e31825fa1f6 DOI: https://doi.org/10.1097/DAD.0b013e31825fa1f6

Emelyanova M, Ghukasyan L, Abramov I, Ryabaya O, Kudryavtseva A, Sadritdinova A, et al. mutations in Russian melanoma patients using LNA PCR clamp and biochip analysis. Oncotarget 2017; 8(32): 52304-20. https://doi.org/10.18632/oncotarget.17014 DOI: https://doi.org/10.18632/oncotarget.17014

Dumaz N, Jouenne F, Delyon J, Mourah S, Bensussan A, Lebbé C. Atypical BRAF and NRAS mutations in mucosal melanoma. Cancers (Basel) 2019; 11(8). https://doi.org/10.3390/cancers11081133 DOI: https://doi.org/10.3390/cancers11081133

Gutiérrez-Castañeda LD, Nova JA, Tovar-Parra JD. Frequency of mutations in BRAF, NRAS, and KIT in different populations and histological subtypes of melanoma. Melanoma Res 2019; 1. https://doi.org/10.1097/CMR.0000000000000628 DOI: https://doi.org/10.1097/CMR.0000000000000628

Bisschop C, Ter Elst A, Bosman LJ, Platteel I, Jalving M, Van Den Berg A, et al. Rapid BRAF mutation tests in patients with advanced melanoma: Comparison of immunohistochemistry, Droplet Digital PCR, and the Idylla Mutation Platform. Melanoma Res 2018; 28(2): 96-104. https://doi.org/10.1097/CMR.0000000000000421 DOI: https://doi.org/10.1097/CMR.0000000000000421

Louveau B, Delyon J, De Moura CR, Battistella M, Jouenne F, Golmard L, et al. A targeted genomic alteration analysis predicts survival of melanoma patients under BRAF inhibitors. Oncotarget 2019; 10(18): 1669-87. https://doi.org/10.18632/oncotarget.26707 DOI: https://doi.org/10.18632/oncotarget.26707

Lokhandwala PM, Tseng LH, Rodriguez E, Zheng G, Pallavajjalla A, Gocke CD, et al. Clinical mutational profiling and categorization of BRAF mutations in melanomas using next generation sequencing. BMC Cancer 2019; 19(1): 1-10. https://doi.org/10.1186/s12885-019-5864-1 DOI: https://doi.org/10.1186/s12885-019-5864-1

Zaremba A, Murali R, Jansen P, Möller I, Sucker A, Paschen A, et al. Clinical and genetic analysis of melanomas arising in acral sites. Eur J Cancer 2019; 119: 66-76. https://doi.org/10.1016/j.ejca.2019.07.008 DOI: https://doi.org/10.1016/j.ejca.2019.07.008

Sheen YS, Tan KT, Tse KP, Liao YH, Lin MH, Chen JS, et al. Genetic alterations in primary melanoma in Taiwan. Br J Dermatol 2019; 1-9.

Hsieh R, Nico MMS, Camillo CMC, Oliveira KK, Sangueza M, Lourenço SV. Mutational Status of NRAS and BRAF Genes and Protein Expression Analysis in a Series of Primary Oral Mucosal Melanoma. Am J Dermatopathol 2017; 39(2). https://doi.org/10.1097/DAD.0000000000000605 DOI: https://doi.org/10.1097/DAD.0000000000000605

Fernandes JD, Hsieh R, De Freitas LAR, Brandao MAR, Lourenço S V., Martin Sangueza, et al. MAP kinase pathways: Molecular roads to primary Acral Lentiginous melanoma. Am J Dermatopathol 2015; 37(12): 892-7. https://doi.org/10.1097/DAD.0000000000000317 DOI: https://doi.org/10.1097/DAD.0000000000000317

Yang Y, Wang D, Jin L, Wu G, Bai Z, Wang J, et al. Prognostic value of the combination of microsatellite instability and BRAF mutation in colorectal cancer. Cancer Manag Res 2018; 10: 3911-29. https://doi.org/10.2147/CMAR.S169649 DOI: https://doi.org/10.2147/CMAR.S169649

dos Santos W, Sobanski T, de Carvalho AC, Evangelista AF, Matsushita M, Berardinelli GN, et al. Mutation profiling of cancer drivers in Brazilian colorectal cancer. Sci Rep 2019; 9(1): 1-13. https://doi.org/10.1038/s41598-019-49611-1 DOI: https://doi.org/10.1038/s41598-019-49611-1

Costigan DC, Dong F. The extended spectrum of RAS-MAPK pathway mutations in colorectal cancer. Genes Chromosom Cancer 2019; 1-8. https://doi.org/10.1002/gcc.22813 DOI: https://doi.org/10.1002/gcc.22813

Furukawa T. Impacts of activation of the mitogen-activated protein kinase pathway in pancreatic cancer. Front Oncol 2015; 5: 1-5. https://doi.org/10.3389/fonc.2015.00023 DOI: https://doi.org/10.3389/fonc.2015.00023

Zhou L, Baba Y, Kitano Y, Miyake K, Zhang X, Yamamura K, et al. KRAS, BRAF, and PIK3CA mutations, and patient prognosis in 126 pancreatic cancers: pyrosequencing technology and literature review. Med Oncol 2016; 33(4): 1-8. https://doi.org/10.1007/s12032-016-0745-9 DOI: https://doi.org/10.1007/s12032-016-0745-9

Matthaios D, Zarogoulidis P, Balgouranidou I, Chatzaki E, Kakolyris S. Molecular pathogenesis of pancreatic cancer and clinical perspectives. Oncology 2011; 81(3-4): 259-72. https://doi.org/10.1159/000334449 DOI: https://doi.org/10.1159/000334449

Ishimura N, Yamasawa K, Rumi MAK, Kadowaki Y, Ishihara S, Amano Y, et al. BRAF and K-ras gene mutations in human pancreatic cancers. Cancer Lett 2003; 199(2): 169-73. https://doi.org/10.1016/S0304-3835(03)00384-7 DOI: https://doi.org/10.1016/S0304-3835(03)00384-7

Jiao Y, Yonescu R, Offerhaus GJA, Klimstra DS, Maitra A, Eshleman JR, et al. Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol 2014; 232(4): 428-35. https://doi.org/10.1002/path.4310 DOI: https://doi.org/10.1002/path.4310

Witkiewicz AK, McMillan EA, Balaji U, Baek GH, Lin WC, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun [Internet] 2015; 6: 1-11. https://doi.org/10.1038/ncomms7744 DOI: https://doi.org/10.1038/ncomms7744

Chmielecki J, Hutchinson KE, Frampton GM, Chalmers ZR, Johnson A, Shi C, et al. Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies recurrent RAF fusions and frequent inactivation of DNA repair genes. Cancer Discov 2014; 4(12): 1398-405. https://doi.org/10.1158/2159-8290.CD-14-0617 DOI: https://doi.org/10.1158/2159-8290.CD-14-0617

Bergmann F, Aulmann S, Sipos B, Kloor M, von Heydebreck A, Schweipert J, et al. Acinar cell carcinomas of the pancreas: a molecular analysis in a series of 57 cases. Virchows Arch 2014; 465(6): 661-72. https://doi.org/10.1007/s00428-014-1657-8 DOI: https://doi.org/10.1007/s00428-014-1657-8

Tang K, Lee C. ARTICLE BRAF Mutation in Papillary Thyroid Carcinoma : Pathogenic Role and Clinical Implications. J Chinese Med Assoc [Internet] 2010; 73(3): 113-28. https://doi.org/10.1016/S1726-4901(10)70025-3 DOI: https://doi.org/10.1016/S1726-4901(10)70025-3

Crispo F, Notarangelo T, Pietrafesa M, Lettini G, Landriscina M. BRAF Inhibitors in Thyroid Cancer : Clinical Impact 1-14.

Goh X, Lum J, Peiling S, Chionh SB, Koay E, Chiu L, et al. BRAF mutation in papillary thyroid cancer — Prevalence and clinical correlation in a South ‐ East Asian cohort 2019; 114-23. https://doi.org/10.1111/coa.13238 DOI: https://doi.org/10.1111/coa.13238

Rendl G, Rodrigues M, Josef GS, Anton H, Zellinger B, Christian CH. Clinicopathological characteristics of thyroid cancer in the federal state of Salzburg 2017; (540): 540-4. https://doi.org/10.1007/s00508-017-1207-x DOI: https://doi.org/10.1007/s00508-017-1207-x

Duan H, Liu X, Ren X, Zhang H, Wu H, Liang Z. Mutation profiles of follicular thyroid tumors by targeted sequencing 2019; 1-10. https://doi.org/10.1186/s13000-019-0817-1 DOI: https://doi.org/10.1186/s13000-019-0817-1

Melo M, Gaspar A, Batista R, Jo M, Costa G, Ribeiro C, et al. TERT, BRAF, and NRAS in Primary Thyroid Cancer and Metastatic Disease 2017; 102: 1898-907. https://doi.org/10.1210/jc.2016-2785 DOI: https://doi.org/10.1210/jc.2016-2785

Yan C, Huang M, Li X, Wang T, Ling R. Relationship between BRAF V600E and clinical features in papillary thyroid carcinoma 2019; (5): 988-96. https://doi.org/10.1530/EC-19-0246 DOI: https://doi.org/10.1530/EC-19-0246

Huang M, Yan C, Xiao J, Wang T, Ling R. Relevance and clinicopathologic relationship of BRAF V600E , TERT and NRAS mutations for papillary thyroid carcinoma patients in Northwest China 2019; 6-15. https://doi.org/10.1186/s13000-019-0849-6 DOI: https://doi.org/10.1186/s13000-019-0849-6

Yu X, Wang J. Key candidate genes associated with BRAF V600E in papillary thyroid carcinoma on microarray analysis 2019; 23369-78. https://doi.org/10.1002/jcp.28906 DOI: https://doi.org/10.1002/jcp.28906

Fazeli S, Paal E, Maxwell JH, Burman KD, Nylen ES, Khosla SG. Salutary Response to Targeted Therapy in Anaplastic Thyroid Cancer 2019. https://doi.org/10.1177/2324709619890942 DOI: https://doi.org/10.1177/2324709619890942

Gao J, Ma XP, Deng FS, Jiang L, Jia WD, Li M. Associations of the BRAF V600E Mutation and PAQR3 Protein Expression with Papillary Thyroid Carcinoma Clinicopathological Features 2019. https://doi.org/10.1007/s12253-019-00779-x DOI: https://doi.org/10.1007/s12253-019-00779-x

Aghajani MJ, Cooper A, Mcguire H, Jeffries T, Saab J, Ismail K. Pembrolizumab for anaplastic thyroid cancer : a case study American Joint Committee on Cancer. Cancer Immunol Immunother [Internet] 2019; (0123456789). https://doi.org/10.1007/s00262-019-02416-7 DOI: https://doi.org/10.1007/s00262-019-02416-7

Bonhomme B, Godbert Y, Perot G, Al Ghuzlan A, Bardet S, Belleannée G, et al. Molecular Pathology of Anaplastic Thyroid Carcinomas: A Retrospective Study of 144 Cases. Thyroid [Internet] 2017; 27(5): 682-92. https://doi.org/10.1089/thy.2016.0254 DOI: https://doi.org/10.1089/thy.2016.0254

Yoo S, Song YS, Lee EK, Hwang J, Kim HH, Jung G, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun [Internet] 2019; 10(1): 2764. https://doi.org/10.1038/s41467-019-10680-5 DOI: https://doi.org/10.1038/s41467-019-10680-5

Zhang X, Wang L, Wang J, Zhao H, Wu J, Liu S, et al. Immunohistochemistry is a feasible method to screen BRAF V600E mutation in colorectal and papillary thyroid carcinoma. Exp Mol Pathol [Internet] 2018; 105(1): 153-9. https://doi.org/10.1016/j.yexmp.2018.07.006 DOI: https://doi.org/10.1016/j.yexmp.2018.07.006

Zhao J, Liu P, Yu Y, Zhi J. Comparison of diagnostic methods for the detection of a BRAF mutation in papillary thyroid cancer 2019; 4661-6. https://doi.org/10.3892/ol.2019.10131 DOI: https://doi.org/10.3892/ol.2019.10131

Colombino M, Paliogiannis P, Cossu A, Santeufemia DA, Sini MC, Casula M, et al. EGFR, KRAS, BRAF, ALK, and cMET genetic alterations in 1440 Sardinian patients with lung adenocarcinoma. BMC Pulm Med [Internet] 2019; 19(1): 209. https://doi.org/10.1186/s12890-019-0964-x DOI: https://doi.org/10.1186/s12890-019-0964-x

Dormieux A, Mezquita L, Cournede P-H, Lacroix L, Rouleau E, Adam J, et al. Association of metastatic pattern and molecular status in metastatic lung non-small cell lung cancer adenocarcinomas. Ann Oncol [Internet] 2019; 30: vii14. https://doi.org/10.1093/annonc/mdz413.049 DOI: https://doi.org/10.1093/annonc/mdz413.049

Andreis TF, Correa BS, Vianna FS, De-Paris F, Siebert M, Leistner-Segal S, et al. Analysis of Predictive Biomarkers in Patients With Lung Adenocarcinoma From Southern Brazil Reveals a Distinct Profile From Other Regions of the Country. J Glob Oncol [Internet] 2019; 1(5): 1-9. https://doi.org/10.1200/JGO.19.00174 DOI: https://doi.org/10.1200/JGO.19.00174

Dang ATH, Tran VU, Tran TT, Thi Pham HA, Le DT, Nguyen L, et al. Actionable Mutation Profiles of Non-Small Cell Lung Cancer patients from Vietnamese population. Sci Rep [Internet] 2020; 10(1): 1-11. https://doi.org/10.1038/s41598-020-59744-3 DOI: https://doi.org/10.1038/s41598-020-59744-3

Song P, Yang D, Wang H, Cui X, Si X, Zhang X, et al. Relationship between the efficacy of immunotherapy and characteristics of specific tumor mutation genes in non‐small cell lung cancer patients. Thorac Cancer [Internet] 2020; 1759-7714.13447.

Mu Y, Yang K, Hao X, Wang Y, Wang L, Liu Y, et al. Clinical Characteristics and Treatment Outcomes of 65 Patients With BRAF-Mutated Non-small Cell Lung Cancer. Front Oncol [Internet] 2020; 10: 1-9. https://doi.org/10.3389/fonc.2020.00603 DOI: https://doi.org/10.3389/fonc.2020.00603

Mack PC, Banks KC, Espenschied CR. Spectrum of Driver Mutations and Clinical Impact of Circulating Tumor DNA Analysis in Non - Small Cell Lung Cancer : Analysis of Over 8000 Cases 2020; 1-5. https://doi.org/10.1002/cncr.32876 DOI: https://doi.org/10.1002/cncr.32876

Tan AC, Lai GGY, San G, Yu S, Doble B, Hui T, et al. Utility of incorporating next-generation sequencing ( NGS ) in an Asian non- small cell lung cancer ( NSCLC ) population : Incremental yield of actionable alterations and cost-e ff ectiveness analysis. Lung Cancer [Internet] 2020; 139: 207-15. https://doi.org/10.1016/j.lungcan.2019.11.022 DOI: https://doi.org/10.1016/j.lungcan.2019.11.022

Thomas C, Amanuel B, Finlayson J, Grieu-Iacopetta Dvsawne F. BRAF mutation detection in hairy cell leukaemia from archival haematolymphoid specimens. Haematology 2015; 47(4): 349-54. https://doi.org/10.1097/PAT.0000000000000245 DOI: https://doi.org/10.1097/PAT.0000000000000245

Angelova EA, Medeiros LJ, Wang W, Muzzafar T, Lu X, Khoury JD, et al. Clinicopathologic and molecular features in hairy cell leukemia- variant : single institutional experience. Mod Pathol 2018; 31: 1717-32. https://doi.org/10.1038/s41379-018-0093-8 DOI: https://doi.org/10.1038/s41379-018-0093-8

Itamura H, Ide M, Sato A, Sueoka N, Eisaburo A, Aya S. Identification of the BRAF V600E mutation in Japanese patients with hairy cell leukemia and related diseases using a quenching probe method. Int J Hematol [Internet] 2018; 108: 416-22. https://doi.org/10.1007/s12185-018-2506-3 DOI: https://doi.org/10.1007/s12185-018-2506-3

Abdel Z, Muwalla F, Jiang L, Foran J. Hairy cell leukemia with CCND1 / IGH fusion gene and BRAF V600E mutation. Leuk Res Reports [Internet] 2020; 13: 100197. https://doi.org/10.1016/j.lrr.2020.100197 DOI: https://doi.org/10.1016/j.lrr.2020.100197

Chen SH, Gong X, Zhang Y, Van Horn RD, Yin T, Huber L, et al. RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1. Oncogene 2018; 37(6): 821-32. https://doi.org/10.1038/onc.2017.384 DOI: https://doi.org/10.1038/onc.2017.384

Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov [Internet] 2012; 11(11): 873-86. https://doi.org/10.1038/nrd3847 DOI: https://doi.org/10.1038/nrd3847

Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of Mutated, Activated BRAF in Metastatic Melanoma. N Engl J Med [Internet] 2010; 363(9): 809-19. https://doi.org/10.1056/NEJMoa1002011 DOI: https://doi.org/10.1056/NEJMoa1002011

Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. N Engl J Med [Internet] 2011; 364(26): 2507-16. https://doi.org/10.1056/NEJMoa1103782 DOI: https://doi.org/10.1056/NEJMoa1103782

Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 2015; 372(1): 30-9. https://doi.org/10.1056/NEJMoa1412690 DOI: https://doi.org/10.1056/NEJMoa1412690

Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined Vemurafenib and Cobimetinib in BRAF -Mutated Melanoma. N Engl J Med [Internet] 2014; 371(20): 1867-76. https://doi.org/10.1056/NEJMoa1408868 DOI: https://doi.org/10.1056/NEJMoa1408868

Corcoran RB, Atreya CE, Falchook GS, Kwak EL, Ryan DP, Bendell JC, et al. Combined BRAF and MEK Inhibition With Dabrafenib and Trametinib in BRAF V600-Mutant Colorectal Cancer. J Clin Oncol [Internet] 2015; 33(34): 4023-31. https://doi.org/10.1200/JCO.2015.63.2471 DOI: https://doi.org/10.1200/JCO.2015.63.2471

Corcoran RB, André T, Atreya CE, Schellens JHM, Yoshino T, Bendell JC, et al. Combined BRAF, EGFR, and MEK Inhibition in Patients with BRAF V600E -Mutant Colorectal Cancer. Cancer Discov [Internet] 2018; 8(4): 428-43. https://doi.org/10.1158/2159-8290.CD-17-1226 DOI: https://doi.org/10.1158/2159-8290.CD-17-1226

Aparicio J, García-Mora C, Martín M, Petriz ML, Feliu J, Sánchez-Santos ME, et al. A Phase I, Dose-Finding Study of Sorafenib in Combination with Gemcitabine and Radiation Therapy in Patients with Unresectable Pancreatic Adenocarcinoma: A Grupo Español Multidisciplinario en Cáncer Digestivo (GEMCAD) Study. Stemmer SM, editor. PLoS One [Internet] 2014; 9(1): e82209. https://doi.org/10.1371/journal.pone.0082209 DOI: https://doi.org/10.1371/journal.pone.0082209

Kim KB, Cabanillas ME, Lazar AJ, Williams MD, Sanders DL, Ilagan JL, et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAFV600E mutation. Thyroid 2013; 23(10): 1277-83. https://doi.org/10.1089/thy.2013.0057 DOI: https://doi.org/10.1089/thy.2013.0057

Brose MS, Cabanillas ME, Cohen EEW, Wirth LJ, Riehl T, Yue H, et al. Vemurafenib in patients with BRAFV600E-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol [Internet] 2016; 17(9): 1272-82. https://doi.org/10.1016/S1470-2045(16)30166-8 DOI: https://doi.org/10.1016/S1470-2045(16)30166-8

Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J Clin Oncol [Internet] 2018; 36(1): 7-13. https://doi.org/10.1200/JCO.2017.73.6785 DOI: https://doi.org/10.1200/JCO.2017.73.6785

Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay J-Y, et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N Engl J Med [Internet] 2015; 373(8): 726-36. https://doi.org/10.1056/NEJMoa1502309 DOI: https://doi.org/10.1056/NEJMoa1502309

Planchard D, Kim TM, Mazieres J, Quoix E, Riely G, Barlesi F, et al. Dabrafenib in patients with BRAFV600E-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol [Internet] 2016; 17(5): 642-50. https://doi.org/10.1016/S1470-2045(16)00077-2 DOI: https://doi.org/10.1016/S1470-2045(16)00077-2

Pettirossi V, Santi A, Imperi E, Russo G, Pucciarini A, Bigerna B, et al. BRAF inhibitors reverse the unique molecular signature and phenotype of hairy cell leukemia and exert potent antileukemic activity. Blood [Internet] 2015; 125(8): 1207-16. https://doi.org/10.1182/blood-2014-10-603100 DOI: https://doi.org/10.1182/blood-2014-10-603100

Tiacci E, Park JH, De Carolis L, Chung SS, Broccoli A, Scott S, et al. Targeting Mutant BRAF in Relapsed or Refractory Hairy-Cell Leukemia. N Engl J Med [Internet] 2015; 373(18): 1733-47. https://doi.org/10.1056/NEJMoa1506583 DOI: https://doi.org/10.1056/NEJMoa1506583

Downloads

Published

2020-07-24

How to Cite

Ricardo Hsieh. (2020). The Role of BRAF Gene in Cancer: Literature Review and Future Directions . Journal of Cancer Research Updates, 9(1), 11–19. https://doi.org/10.30683/1929-2279.2020.09.03

Issue

Section

Articles
Loading...