Challenges in Development of Nanomedicine for Treatment of Cancer

Authors

  • Dimple Sethi Chopra Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, India

DOI:

https://doi.org/10.30683/1929-2279.2019.08.10

Keywords:

Nanomaterials, Smart Cancer Nanomedicine, tumors, heterogeneity, overall survival, immunotherapeutics.

Abstract

The inherent limitations of conventional cancer therapies have stimulated the growth of cancer nanomedicine. This is primarily attributable to its unique features for drug delivery, diagnosis and imaging, synthetic vaccine development and miniature medical devices, supplemented with the inherent therapeutic property of some nanomaterials. Nanotherapies that integrate some of these features are already in use and others have great potential in clinical development, with definitive results in near future. In order to develop smart cancer nanomedicine, it is very essential to bridge the gap between Bio-Nanoscience and Cancer Nanomedicine with a better understanding about the molecular basis of cancer. The development of smart cancer nanomedicine can be accelerated by patient stratification, rational drug selection, combination therapy, synergism with immunotherapeutics. The nanoplatforms that exhibit a significant increase in progression free survival are most desirable.

References

van der Meel R, Sulheim E, Shi Y. et al. Smart cancer nanomedicine. Nat Nanotechnol 2019; 14: 1007-1017. https://doi.org/10.1038/s41565-019-0567-y DOI: https://doi.org/10.1038/s41565-019-0567-y

Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17: 20-37. https://doi.org/10.1038/nrc.2016.108 DOI: https://doi.org/10.1038/nrc.2016.108

Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M, Coussens LM, Daldrup-Link HE. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016; 11: 986-994. https://doi.org/10.1038/nnano.2016.168 DOI: https://doi.org/10.1038/nnano.2016.168

Barenholz Y. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 2012; 160: 117-134. https://doi.org/10.1016/j.jconrel.2012.03.020 DOI: https://doi.org/10.1016/j.jconrel.2012.03.020

Petersen GH, Alzghari SK, Chee W, Sankari SS, La-Beck NM. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional nonliposomal doxorubicin. J Control Release 2016; 232: 255-264. https://doi.org/10.1016/j.jconrel.2016.04.028 DOI: https://doi.org/10.1016/j.jconrel.2016.04.028

Rugo HS, et al. Randomized phase III trial of paclitaxel once per week compared with nanoparticle albumin-bound nab¬paclitaxel once per week or ixabepilone with bevacizumab as first-line chemotherapy for locally recurrent or metastatic breast cancer: CALGB 40502/NCCTG N063H (Alliance). J Clin Oncol 2015; 33: 2361-2369. https://doi.org/10.1200/JCO.2014.59.5298 DOI: https://doi.org/10.1200/JCO.2014.59.5298

Kato K, et al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs 2012; 30: 1621-1627. https://doi.org/10.1007/s10637-011-9709-2 DOI: https://doi.org/10.1007/s10637-011-9709-2

Ahn HK, et al. A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 2014; 74: 277- 282. https://doi.org/10.1007/s00280-014-2498-5 DOI: https://doi.org/10.1007/s00280-014-2498-5

Clark AJ, et al. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc Natl Acad Sci USA 2016; 113: 3850-3854. https://doi.org/10.1073/pnas.1603018113 DOI: https://doi.org/10.1073/pnas.1603018113

Ashton S, et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci Transl Med 2016; 8: 325ra17. https://doi.org/10.1126/scitranslmed.aad2355 DOI: https://doi.org/10.1126/scitranslmed.aad2355

Hirsch LR, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003; 100: 13549-13554. https://doi.org/10.1073/pnas.2232479100 DOI: https://doi.org/10.1073/pnas.2232479100

Maier-Hauff K, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011; 103: 317-324. https://doi.org/10.1007/s11060-010-0389-0 DOI: https://doi.org/10.1007/s11060-010-0389-0

Maggiorella L, et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol 2012; 8: 1167-1181. https://doi.org/10.2217/fon.12.96 DOI: https://doi.org/10.2217/fon.12.96

Dritschilo A, et al. Phase I study of liposome-encapsulated craf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies. Clin Cancer Res 2006; 12: 1251-1259. https://doi.org/10.1158/1078-0432.CCR-05-1260 DOI: https://doi.org/10.1158/1078-0432.CCR-05-1260

Elazar V, et al. Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis. Int J Cancer 2010; 126: 1749-1760. https://doi.org/10.1002/ijc.24890 DOI: https://doi.org/10.1002/ijc.24890

Davis ME, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010; 464: 1067-1070. https://doi.org/10.1038/nature08956 DOI: https://doi.org/10.1038/nature08956

Yildiz I, Shukla S, Steinmetz NF. Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 2011; 22: 901-908. https://doi.org/10.1016/j.copbio.2011.04.020 DOI: https://doi.org/10.1016/j.copbio.2011.04.020

Yla-Herttuala S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European Union. Mol Ther 2012; 20: 1831-1832. https://doi.org/10.1038/mt.2012.194 DOI: https://doi.org/10.1038/mt.2012.194

Naldini L. Gene therapy returns to centre stage. Nature 2015; 351-360. https://doi.org/10.1038/nature15818 DOI: https://doi.org/10.1038/nature15818

Shukla S, DiFranco NA, Wen AM, Commandeur U, Steinmetz NF. To target or not to target: active versus passive tumor homing of filamentous nanoparticles based on potato virus X. Cell Mol Bioeng 2015; 8: 433-444. https://doi.org/10.1007/s12195-015-0388-5 DOI: https://doi.org/10.1007/s12195-015-0388-5

Czapar AE, et al. Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy. ACS Nano 2016; 10: 4119-4126. https://doi.org/10.1021/acsnano.5b07360 DOI: https://doi.org/10.1021/acsnano.5b07360

Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 2015; 219: 396-405. https://doi.org/10.1016/j.jconrel.2015.07.030 DOI: https://doi.org/10.1016/j.jconrel.2015.07.030

Chow EK, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 2011; 3: 73ra21. https://doi.org/10.1126/scitranslmed.3001713 DOI: https://doi.org/10.1126/scitranslmed.3001713

Van der Meel R, Lammers T, Hennink WE. Cancer nanomedicines: oversold or underappreciated? Expert Opin Drug Deliv 2017; 14: 1-5. https://doi.org/10.1080/17425247.2017.1262346 DOI: https://doi.org/10.1080/17425247.2017.1262346

Garbuzenko OB, et al. Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance. Proc Natl Acad Sci USA 2010; 107: 10737-10742. https://doi.org/10.1073/pnas.1004604107 DOI: https://doi.org/10.1073/pnas.1004604107

Kreiter S, et al. Mutant MHC class II epitopes drive therapeu-tic immune responses to cancer. Nature 2015; 520: 692-696. https://doi.org/10.1038/nature14426 DOI: https://doi.org/10.1038/nature14426

Kranz LM, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016; 534: 396-401. https://doi.org/10.1038/nature18300 DOI: https://doi.org/10.1038/nature18300

Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17: 261-279. https://doi.org/10.1038/nrd.2017.243 DOI: https://doi.org/10.1038/nrd.2017.243

Oberli MA, et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett 2017; 17: 1326¬1335. https://doi.org/10.1021/acs.nanolett.6b03329 DOI: https://doi.org/10.1021/acs.nanolett.6b03329

Sahin U, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017; 547: 222-226. https://doi.org/10.1038/nature23003 DOI: https://doi.org/10.1038/nature23003

Nel AE, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009; 8: 543-557. https://doi.org/10.1038/nmat2442 DOI: https://doi.org/10.1038/nmat2442

Mahmoudi M, et al. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011; 111: 5610¬5637. https://doi.org/10.1021/cr100440g DOI: https://doi.org/10.1021/cr100440g

Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25. https://doi.org/10.1016/j.addr.2013.11.009 DOI: https://doi.org/10.1016/j.addr.2013.11.009

Hrkach J, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012; 4: 128ra39. Firstin-human testing of a targeted, controlled-release polymeric NP for cancer chemotherapy. https://doi.org/10.1126/scitranslmed.3003651 DOI: https://doi.org/10.1126/scitranslmed.3003651

Eliasof S, et al. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc Natl Acad Sci USA 2013; 110: 15127-15132. https://doi.org/10.1073/pnas.1309566110 DOI: https://doi.org/10.1073/pnas.1309566110

Zuckerman JE, et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci USA 2014; 111: 11449-11454. https://doi.org/10.1073/pnas.1411393111 DOI: https://doi.org/10.1073/pnas.1411393111

Ritz S, et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 2015; 16: 1311-1321. https://doi.org/10.1021/acs.biomac.5b00108 DOI: https://doi.org/10.1021/acs.biomac.5b00108

Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio-Nano Science and Cancer Nanomedicine. ACS Nano 2017; 11(10): 9594-9613. https://doi.org/10.1021/acsnano.7b04855 DOI: https://doi.org/10.1021/acsnano.7b04855

Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387-6392.

Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 2015; 91: 3-6. https://doi.org/10.1016/j.addr.2015.01.002 DOI: https://doi.org/10.1016/j.addr.2015.01.002

Kearney CJ, Mooney DJ. Macroscale delivery systems for molecular and cellular payloads. Nat Mater 2013; 12: 1004¬1017. https://doi.org/10.1038/nmat3758 DOI: https://doi.org/10.1038/nmat3758

Lammers T, Kiessling F, Ashford M, Hennink W, Crommelin D, Storm G. Cancer nanomedicine: is targeting our target? Nat Rev Mater 2016; 1: 16069. https://doi.org/10.1038/natrevmats.2016.69 DOI: https://doi.org/10.1038/natrevmats.2016.69

Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WC. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016; 1: 16014. https://doi.org/10.1038/natrevmats.2016.14 DOI: https://doi.org/10.1038/natrevmats.2016.14

Wang C, Ye Y, Hu Q, Bellotti A, Gu Z. Tailoring biomaterials for cancer immunotherapy: Emerging trends and future outlook. Adv Mater 2017; 29: 1606036. https://doi.org/10.1002/adma.201606036 DOI: https://doi.org/10.1002/adma.201606036

Jiang W, Von Roemeling CA, Chen Y, Qie Y, Liu X, Chen J, Kim BY. Designing nanomedicine for immuno-oncology. Nat Biomed Eng 2017; 1: 0029. https://doi.org/10.1038/s41551-017-0029 DOI: https://doi.org/10.1038/s41551-017-0029

Sun Q, Barz M, De Geest BG, Diken M, Hennink WE, Kiessling F, Lammers T, Shi Y. Nanomedicine and macroscale materials in immuno-oncology. Chem Soc Rev 2019; 48: 351-381. https://doi.org/10.1039/C8CS00473K DOI: https://doi.org/10.1039/C8CS00473K

Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 2015; 115: 11109-11146. https://doi.org/10.1021/acs.chemrev.5b00109 DOI: https://doi.org/10.1021/acs.chemrev.5b00109

Downloads

Published

2019-04-09

How to Cite

Dimple Sethi Chopra. (2019). Challenges in Development of Nanomedicine for Treatment of Cancer . Journal of Cancer Research Updates, 8(1), 64–69. https://doi.org/10.30683/1929-2279.2019.08.10

Issue

Section

Articles