Effect of Intracellular and Extracellular Mushroom Polysaccharides on Growth Inhibition of Human Carcinoma Cell Lines


  • Diana Martinho Chemical Engineering and Biotechnology Research Center and Department of Chemical Engineering of Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro Nº.1, 1950-072 Lisboa, Portugal
  • Amin Karmali Chemical Engineering and Biotechnology Research Center and Department of Chemical Engineering of Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro Nº.1, 1950-072 Lisboa, Portugal




Polysaccharides from basidiomycete strains, submerged and solid state fermentation, FTIR, gel filtration chromatography, Superoxide radical scavenging and cell growth inhibition activities, human carcinoma cell lines.


Introduction: Mushroom polysaccharides play an important role in nutraceutical and functional food because they act as biological active modifiers. The aim of the present work involved the production, purification and partial characterization of intracellular (IPS) and extracellular polysaccharides (EPS) from several basidiomycete strains. Such polysaccharides were used to investigate their effect on growth of human carcinoma cell lines.

Methods: Mushroom polysaccharides were produced from several basidiomycete strains by submerged and solid state fermentations, assayed for superoxide radical scavenging activity, purified by gel filtration chromatography, analysed by FTIR and their effect on human carcinoma cell line was investigated by MTT method.

Results: Mushroom polysaccharides have revealed scavenging activity in the range of 22 - 81 % for Po (s) and Pe (2), respectively. FTIR analysis of polysaccharides showed absorption bands characteristics of these biological macromolecules. IPS inhibited cell growth of HeLa in the range of 16.8 - 27.01 % for Po (s) and Ga (1), respectively.

EPS inhibited cell growth of HeLa, A459, A431 and OE21 in the ranges of 3.08 - 92.2 %, 13.8 - 97.4 %, 14.7 - 93. 8% and 25 - 94% for Il (1) and Ga (1), Gc (1) and Ga (1), Il (1) and Ga (1), Le (1) and Ga (1), respectively.

Purified preparations of polysaccharides confirmed the growth inhibition of these biomolecules.

Conclusion: The present results strongly suggest growth inhibition of human carcinoma cell lines by mushroom polysaccharides and it will require a future research to understand its molecular mechanism of action.


Zhang Y, Geng W, Shen Y, Wang Y, Dai Y-C. Edible Mushroom Cultivation for Food Security and Rural Development in China: Bio-Innovation, Technological Dissemination and Marketing. Sustainability 2014; 6: 2961-2973. https://doi.org/10.3390/su6052961 DOI: https://doi.org/10.3390/su6052961

Novak M, Vetvicka V. β-Glucans, History, and the Present: Immunomodulatory Aspects and Mechanisms of Action. J Immunotoxicol 2008; 5: 47-57. https://doi.org/10.1080/15476910802019045 DOI: https://doi.org/10.1080/15476910802019045

Wasser SP, Medicinal Mushroom Science: Current Perspectives, Advances, Evidences, and Challenges. Biomed J 2014; 37: 345-356. https://doi.org/10.4103/2319-4170.138318 DOI: https://doi.org/10.4103/2319-4170.138318

Chang R. Bioactive Polysaccharides from Traditional Chinese Medicine Herbs as Anticancer Adjuvants. The Journal of Alternative and Complementary Medicine 2002; 8: 559-565. https://doi.org/10.1089/107555302320825066 DOI: https://doi.org/10.1089/107555302320825066

Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Review Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016; 21: 1705. https://doi.org/10.3390/molecules21121705 DOI: https://doi.org/10.3390/molecules21121705

Ayeka PA. Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review article. Evidence-Based Complementary and Alternative Medicine 2018; Article ID 7271509, 9 pages. https://doi.org/10.1155/2018/7271509 DOI: https://doi.org/10.1155/2018/7271509

Chen J, Seviour R. Medicinal importance of fungal -(1→3),(1→6)-glucans. Mycol Res 2007; 111: 635-652. https://doi.org/10.1016/j.mycres.2007.02.011 DOI: https://doi.org/10.1016/j.mycres.2007.02.011

Montoya S, Sánchez OJ, Levin L. Polysaccharide Production by Submerged and Solid-State Cultures from Several Medicinal Higher Basidiomycetes. International Journal of Medicinal Mushrooms 2013; 15: 71-79. https://doi.org/10.1615/IntJMedMushr.v15.i1.80 DOI: https://doi.org/10.1615/IntJMedMushr.v15.i1.80

Fraga I, Coutinho J, Bezerra RM, Dias AA, Marques G, Nunes FM. Influence of culture medium growth variables on Ganoderma lucidum exopolysaccharides structural features. Carbohydrate Polymers 2014; 11: 936-946. https://doi.org/10.1016/j.carbpol.2014.05.047 DOI: https://doi.org/10.1016/j.carbpol.2014.05.047

Ruthes AC, Carbonero ER, Córdova MM, Baggio CH, Santos ARS, Sassaki GL, Cipriani TR, Gorin PAJ, Iacomini M. Lactarius rufus (1→3),(1→6)- -D-glucans: Structure, antinociceptive and anti-inflammatory effects. Carbohyd Polym 2013; 94: 129-136. https://doi.org/10.1016/j.carbpol.2013.01.026 DOI: https://doi.org/10.1016/j.carbpol.2013.01.026

Smiderle FR, Carbonero ER, Mellinger CG, Sassaki GL, Gorin PAJ, Lacomini M. Structural characterization of a polysaccharide and a -glucan isolated from the edible mushroom Flammulina velutipes. Phytochemistry 2006; 67: 2189-2196. https://doi.org/10.1016/j.phytochem.2006.06.022 DOI: https://doi.org/10.1016/j.phytochem.2006.06.022

Cao X, Liu J-L. Yang W. Hou X. Li Q-J. Antitumor activity of polysaccharide extracted from Pleurotus ostreatus mycelia against gastric cancer in vitro and in vivo. Molecular Medicine Reports 2015; 12: 2383-2389. https://doi.org/10.3892/mmr.2015.3648 DOI: https://doi.org/10.3892/mmr.2015.3648

Uddin PK. MM, Islam MS, Pervin R, Dutta S, Talukder RI, Rahman M. Optimization of extraction of antioxidant polysaccharide from Pleurotus ostreatus (Jacq.) P. Kumm and its cytotoxic activity against murine lymphoid cancer cell line. PLoS ONE 2019; 14: e0209371. https://doi.org/10.1371/journal.pone.0209371 DOI: https://doi.org/10.1371/journal.pone.0209371

Zhang Y, Liu W, Xu C, Huang W, He P. Characterization and Antiproliferative Effect of Novel Acid Polysaccharides from the Spent Substrate of Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) Cultivation. Int J Med Mushrooms 2017; 19: 395-403. https://doi.org/10.1615/IntJMedMushrooms.v19.i5.20 DOI: https://doi.org/10.1615/IntJMedMushrooms.v19.i5.20

Wang JT, Wang Q, Han JR. Yield, polysaccharides content and antioxidant properties of the mushroom Agaricus subrufescens produced on different substrates based on selected agricultural wastes. Scientia Horticulturae 2013; 157: 84-89. https://doi.org/10.1016/j.scienta.2013.04.006 DOI: https://doi.org/10.1016/j.scienta.2013.04.006

Oei P, Mushroom cultivation - Appropriate technology for mushroom growers, 3rd edition, Backhuys Publisher 2016.

Silva S, Martins S, Karmali A, Rosa E. Production, purification and characterisation of polysaccharides from Pleurotus ostreatus with antitumor activity. Journal of the Science of Food and Agriculture 2012; 92: 1826-1832. https://doi.org/10.1002/jsfa.5560 DOI: https://doi.org/10.1002/jsfa.5560

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Cicco N, Lanorte MT, Paraggio M, Viggiano M, Lattanzio V. A reproducible, rapid and inexpensive Folin-Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchemical Journal 2009; 91: 107-110. https://doi.org/10.1016/j.microc.2008.08.011 DOI: https://doi.org/10.1016/j.microc.2008.08.011

Robak J, Gryglewski RJ. Flavonoids Are Scavengers of Superoxide Anions. Biochemical Pharmacology 1988; 37: 837-841. https://doi.org/10.1016/0006-2952(88)90169-4 DOI: https://doi.org/10.1016/0006-2952(88)90169-4

Osinska-Jaroszuk M, Jarosz-Wilkołazka A, Jaroszuk-Siciseł J, Szałapata K, Nowak A, Jaszek M, Ozimek E, Majewska M. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol 2015; 31: 1823-1844. https://doi.org/10.1007/s11274-015-1937-8 DOI: https://doi.org/10.1007/s11274-015-1937-8

Berovic M, Habijanic J, Boh B, Wraber B, Petravic-Tominac V. Production of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst. (higher Basidiomycetes), biomass and polysaccharides by solid state cultivation. Int J Med Mushrooms 2012; 14: 513-520. https://doi.org/10.1615/IntJMedMushr.v14.i5.100 DOI: https://doi.org/10.1615/IntJMedMushr.v14.i5.100

Sun C, Wang JW, Fang L, Gao XD, Tan RX. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keisskeriella sp. YS 4108. Life Sciences 2004; 75: 1063-1073. https://doi.org/10.1016/j.lfs.2004.02.015 DOI: https://doi.org/10.1016/j.lfs.2004.02.015

Cui J, Goh KKT, Archer R, Singh H. Characterisation and bioactivity of protein-bound polysaccharides from submerged culture fermentation of Coriolus versicolor Wr-74 and ATCC-20545 strains. J Ind Microbiol Biotechnol 2007; 34: 393-402. https://doi.org/10.1007/s10295-007-0209-5 DOI: https://doi.org/10.1007/s10295-007-0209-5

Synytsya A, Mícková K, Synytsya A, Jablonsky I, Spevácek J, Erban V, et al. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate Polymers 2009; 76: 548-556. https://doi.org/10.1016/j.carbpol.2008.11.021 DOI: https://doi.org/10.1016/j.carbpol.2008.11.021

Radzki W, Kalbarczyk J. Water soluble polysaccharides content in three species of edible and medicinal mushrooms: Lentinula edodes, Pleurotus ostreatus, Agaricus blazei. Kerva Polonica 2010; 56: 31-38.

Kozarski M, Klaus A, Niksíc M, Vrvic MM, Todorovic N, Jakovljevic D, Griensven LJ. Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. Journal of Food Composition and Analysis 2012; 26: 144-153. https://doi.org/10.1016/j.jfca.2012.02.004 DOI: https://doi.org/10.1016/j.jfca.2012.02.004

Wang X, Chen X, Qi Z, Liu X, Li W, Wang S. A study of Ganoderma lucidum spores by FTIR microspectroscopy. Spectrochimica Acta 2012; 91: 285-289. https://doi.org/10.1016/j.saa.2012.02.004 DOI: https://doi.org/10.1016/j.saa.2012.02.004

Roca-Lema D, Martinez-Iglesias O, Fernández de Ana Portela C, Rodríguez-Blanco A, Valladares-Ayerbes M, Díaz-Díaz A, Casas-Pais A, Prego C, Figueroa A. In vitro Anti-proliferative and Anti-invasive Effect of Polysaccharide-rich Extracts from Trametes Versicolor and Grifola Frondosa in Colon Cancer Cells. Int J Med Sci 2019; 16: 231-240. https://doi.org/10.7150/ijms.28811 DOI: https://doi.org/10.7150/ijms.28811

Zhang L, Li CG, Liang H, Reddy N. Bioactive Mushroom Polysaccharides: Immunoceuticals to Anticancer Agents. J Nutraceuticals Food Sci 2017; 2: 1-5.

Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016; 5: 80. https://doi.org/10.3390/foods5040080 DOI: https://doi.org/10.3390/foods5040080




How to Cite

Diana Martinho, & Amin Karmali. (2019). Effect of Intracellular and Extracellular Mushroom Polysaccharides on Growth Inhibition of Human Carcinoma Cell Lines . Journal of Cancer Research Updates, 8(1), 29–41. https://doi.org/10.30683/1929-2279.2019.08.05