The Protective Effect of Methanol Extract of Rauvolfia vomitoria against the Clastogenicity and Hepatotoxicity of Sodium Arsenite in Mice

The Protective Effect of Methanol Extract of Rauvolfia vomitoria against the Clastogenicity and Hepatotoxicity of Sodium Arsenite in Mice

Authors

  • Kazeem A. Akinwumi Department of Chemical and Food Sciences, Bells University of Technology, Ota, Ogun State, Nigeria
  • Kazeem A. Akinwumi Department of Chemical and Food Sciences, Bells University of Technology, Ota, Ogun State, Nigeria
  • Osifeso O. Olabode Department of Sciences Laboratory Technology, Moshood Abiola Polytechnic, Abeokuta, Nigeria
  • Osifeso O. Olabode Department of Sciences Laboratory Technology, Moshood Abiola Polytechnic, Abeokuta, Nigeria
  • Adedoja A. Wakeel Department of Public Health City University of New York, New York, USA
  • Adedoja A. Wakeel Department of Public Health City University of New York, New York, USA

DOI:

https://doi.org/10.30683/1929-2279.2018.07.04.2

Keywords:

Arsenic, medicinal plant, micronucleated polychromatic erythrocytes, γ-glutamyl transferase, alkaline phosphatase, alanine amino transferase and aspartate amino transferase

Abstract

Exposure to arsenic is a public health concern and many strategies are being employed to counter arsenic intoxication. Here, we investigated the effect of methanol leaf extracts of Rauvolfia vomitoria (MRV) on mice exposed to sodium arsenite (SA) using micronucleus assay and monitoring the activities of γ-glutamyltransferase (γ-GT), alkaline phosphate (ALP), aspartate aminotransferase (AST) and alanine-aminotransferase (ALT) in the plasma. In addition, pathological examination of the liver of test and control mice was carried out. Test mice were exposed to 1300, 650 and 325 mg/kg body weight of MRV for seven consecutive days before injection (i.p.) with 1 mg/kg body weight of SA on the seventh day. Negative control mice were given distilled water, while the positive control animals were injected with 1 mg/kg body weight of SA twenty hours before the experiment was terminated on the eighth day. The SA significantly (p < 0.05) increased the frequency of micronucleated polychromatic erythrocyte (mPCE) and the activities of γ-GT, ALP, AST and ALT when compared to the negative control. Mice treated with SA showed portal inflammation and hepatocyte necrosis. Pretreatment with MRV significantly (p< 0.05) reduced the biochemical parameters except ALT that was increased in animals treated with SA and 1300 mg/kg body weight MRV. Histopathological changes induced by SA were prevented by 650 and 325 mg/kg body weight MRV. This suggests that methanol extract of Rauvolfia vomitoria offers some degree of chemo-protection against SA induced clastogenicity and liver damage at lower doses

References

National Toxicological Progam. Arsenic and certain arsenic compounds. In: 14th report on carcinogen. Research Triangle Park NC; 2016.

Gambell M, Liu X, Ahsan H, et al. Folate, homocysteine and arsenic metabolism in arsenic exposed individuals in Bangladesh. Env Health Persp 2005; 113: 1683. https://doi.org/10.1289/ehp.8084 DOI: https://doi.org/10.1289/ehp.8084

Tseng C, Chiou H, Hsueh Y, Chong C, Chen C. Epidemiologic evidence of diabetogenic effect of arsenic. Toxicol Lett 2002; 133: 69-76. https://doi.org/10.1016/S0378-4274(02)00085-1 DOI: https://doi.org/10.1016/S0378-4274(02)00085-1

National research council. Arsenic in drinking water. Washington DC: National Academy Press 1999.

Huff J, Chan P, Nyska A. Is the human carcinogen arsenic carcinogenic in laboratory animal? Toxicol Sci 2002; 5: 17-23. DOI: https://doi.org/10.1093/toxsci/55.1.17

International agency for research on cancer. Some drinking water disinfectants and contaminants, including arsenic. 2004: 84, Lyon.

Vogt B, Rossman, G. Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblast. A possible mechanism for arsenite’s comutagenicity. Mutat Res 2001; 478-159. https://doi.org/10.1016/S0027-5107(01)00137-3 DOI: https://doi.org/10.1016/S0027-5107(01)00137-3

Lee T, Tanaka P, Lamb T, Gilmer J, Barret, J. Induction of gene amplification by arsenic. Sci 1988; 241: 78-81. https://doi.org/10.1126/science.3388020 DOI: https://doi.org/10.1126/science.3388020

Mead M, Arsenic. In search of an antidote to a global poison. Environ Health Perspect 2005; 13: A378-A386. https://doi.org/10.1289/ehp.113-a378 DOI: https://doi.org/10.1289/ehp.113-a378

Vahter M. Interactions between arsenic-induced toxicity and nutrition in early life. J Nutr 2004; 137: 2798-2804. https://doi.org/10.1093/jn/137.12.2798 DOI: https://doi.org/10.1093/jn/137.12.2798

Ramnathan K, Balakumar B, Panneerselvam C. Effects of ascorbic acid and α-tocopherol on arsenic-induced oxidative stress. Hum Exp Toxicol 2002; 21: 675-680. https://doi.org/10.1191/0960327102ht307oa DOI: https://doi.org/10.1191/0960327102ht307oa

Sharma A, Mukesh K, Madhu K. Modulatory role of Emblica officinalis fruit extract against arsenic induced oxidative stress in Swiss albino mice. Chem Biol Interact 2009; 180(1): 20-30. https://doi.org/10.1016/j.cbi.2009.01.012 DOI: https://doi.org/10.1016/j.cbi.2009.01.012

Roy M, Sinha D, Sutapa M, Paul S, Bhattacharya R. Protective effect of dietary phytochemicals against arsenite induced genotoxicity in mammalian V79 cells. Indian J Expt Biol 2008; 46: 690-696.

Yousef M, El-Demerdash F, Radwan F. Sodium arsenite induced biochemical perturbations in rats. Ameliorating effect of curcumin. Food Chem Toxicol 2008; 46: 3506-3511. https://doi.org/10.1016/j.fct.2008.08.031 DOI: https://doi.org/10.1016/j.fct.2008.08.031

Roychoudhury A, Das T, Sharma A, Taluker G. Dietary garlic extract in modifying clastogenic effects of inorganic arsenic in mice-two generation studies. Mutat Res 1996; 359: 165-170. https://doi.org/10.1016/S0165-1161(96)90263-0 DOI: https://doi.org/10.1016/S0165-1161(96)90263-0

Sofowora A. Medicinal plants and traditional medicine in Africa. Second ed. Ibadan Nigeria. Spectrum Book Ltd: 1993.

Amole O, Yemitan O, Oshikoya K. Anticonvulsant activity of Rauvolfia vomitoria (Afzel). Afr J Pharm Pharmacol 2009; 3(6): 319-322.

Bemis D, Capodice J, Gorroochurn P, Katz A, Buttyan R. Antiprostate cancer activity of a ß-carboline alkaloid enriched extract from Rauwolfia vomitoria. Int J Oncol 2006; 9: 1065-73. DOI: https://doi.org/10.3892/ijo.29.5.1065

Akpanabiatu M, Umoh I, Edet E, Ekanem T, Ukaffia S, Ndem, J. Effects of interaction of vitamin A and Rauwolfia vomitoria root bark extract on marker enzymes of cardiac diseases. Indian J Clin Biochem 2009; 24(3): 241-244. https://doi.org/10.1007/s12291-009-0045-7 DOI: https://doi.org/10.1007/s12291-009-0045-7

Obembe E, Sokomba S, Olorunfemi O, Alemika T. Antipsychotic effects and tolerance of crude Rauvolfia vomitoria in Nigerian psychiatric in-patients. Phytother Res 1994: 8 (4): 218-223. https://doi.org/10.1002/ptr.2650080406 DOI: https://doi.org/10.1002/ptr.2650080406

Waterman. A phytochemist in the African rain forest. Phytochem 1986; 25(1): 3-17. https://doi.org/10.1016/S0031-9422(00)94492-3 DOI: https://doi.org/10.1016/S0031-9422(00)94492-3

Olapade. Clinical evaluation of the potentials of Rauvolfia vomitoria based extract in the treatment of haemorrhoids and anal prolapse in Nigeria. WOCMAP I - Medicinal and Aromatic Plants Conference: part 2 of 4. ISHS Acta Horticulturae 1992; 332. DOI: https://doi.org/10.17660/ActaHortic.1993.332.36

Burkill. Useful plants of West Tropical Africa. Vol 2. Families E-I: Royal Botanical Gardens; Kew 1994.

Principe P. The economic significance of plants and their constituents as drugs. In: Wagner H, Hikino H, Farnsworth NR, editors. Economic and medicinal research. Vol. 3. London: Academic Press 1989; pp. 1-17. https://doi.org/10.1016/B978-0-12-730064-1.50005-7 DOI: https://doi.org/10.1016/B978-0-12-730064-1.50005-7

Amole O, Onabanjo A, Odofin A. The analgesic effect of Rauvolfia vomitoria (Afzel). Biomed Res 2006; 17 (2): 125-27.

Amole O, Agbaje E, Onabanjo A. Chemotherapeutic actions of Rauvolfia vomitoria on Plasmodium yoelii infection. Nig J Physiol Sci 1993; 9: 35-38.

Schmid W. The micronucleus test. Mutat Res 1975; 31: 9-15. https://doi.org/10.1016/0165-1161(75)90058-8 DOI: https://doi.org/10.1016/0165-1161(75)90058-8

Adler I. Cytogenic tests in mammalian. In: Venitt S, Paarry JM, editors. Mutagenicity testing-A practical approach. Oxford Washington DC: IRL Press 1984; p. 275-306.

Szasz. A kinetic photometric method for serum gamma glutamyl transferase. Clin Chem 1969; 124: 124-36. DOI: https://doi.org/10.1093/clinchem/15.2.124

Geranó M, Angelo D, Sanogo R, Morabito A, Pergolizzi S, De Pasquale R. Hepatoprotective activity of Trichilia roka on carbon tetrachloride-induced liver damage in rats. JPP 2001; 53: 1569-74. https://doi.org/10.1211/0022357011777954 DOI: https://doi.org/10.1211/0022357011777954

Hayash M. The micronucleus test—most widely used in vivo genotoxicity test—Genes and Environment 2016; 38: 18. https://doi.org/10.1186/s41021-016-0044-x DOI: https://doi.org/10.1186/s41021-016-0044-x

Odunola O, Uka E, Akinwumi K, Gbadegesin M, Osifeso O, Ibegbu M. Exposure of laboratory mice to domestic cooking gas. Implications for toxicity. Int J Environ Res Public Health 2008; 5(3): 172-176. https://doi.org/10.3390/ijerph5030172 DOI: https://doi.org/10.3390/ijerph5030172

Balakumar B, Suresh R, Venugopal R. Modulatory effects of ascorbic acid and α- tocopherol on arsenic induced micronuclei formation. Int J Pharmacol 2010; 6 (5): 676-680. https://doi.org/10.3923/ijp.2010.676.680 DOI: https://doi.org/10.3923/ijp.2010.676.680

Gurr J, Liu F, Lynn S, Jan K. Calcium-dependent nitric oxide production is involved in arsenite induced micronulei. Mutat Res 1998; 416: 137-148. https://doi.org/10.1016/S1383-5718(98)00076-X DOI: https://doi.org/10.1016/S1383-5718(98)00076-X

Ahmad S, Kitchin K, Cullen W. Plasmid DNA caused by methylated arsenicals, ascorbic acid and human ferritin. Toxicol Lett 2002; 133: 47-57. https://doi.org/10.1016/S0378-4274(02)00079-6 DOI: https://doi.org/10.1016/S0378-4274(02)00079-6

Mass M, Tennant A, Roop B, et al. Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol 2001; 14: 355- 361. https://doi.org/10.1021/tx000251l DOI: https://doi.org/10.1021/tx000251l

Shi H, Shi X, Liu K. Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 2004; 255: 67-78. https://doi.org/10.1023/B:MCBI.0000007262.26044.e8 DOI: https://doi.org/10.1023/B:MCBI.0000007262.26044.e8

Wiseman. Damage to DNA by reactive oxygen and nitrogen species. Role in inflammatory disease and progression to cancer. Biochem J 1996; 313: 17-29. https://doi.org/10.1042/bj3130017 DOI: https://doi.org/10.1042/bj3130017

Yamanaka K, Okada S. Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals. Environ Health Perspect 1994; 102(Suppl 3): S37-40. https://doi.org/10.1289/ehp.94102s337 DOI: https://doi.org/10.1289/ehp.94102s337

Kato K, Hayashi H, Hasegawa A. DNA damage induced in cultured human alveolar (L-32) cells by exposure to dimethylarsinic acid. Environ Health Perspect 1994; 102: 285-288. https://doi.org/10.1289/ehp.94102s3285 DOI: https://doi.org/10.1289/ehp.94102s3285

Eastmond D, Tucker J. Identification of aneuploidy inducing agents using cytokinesis blocked human lymphocytes and antikinetochore antibody. Environ Mol 1989; 13: 34-43. https://doi.org/10.1002/em.2850130104 DOI: https://doi.org/10.1002/em.2850130104

Gudi R, Sandhu S, Athwal S. Kinetochore identification in micronuclei in mouse bone marrow erythrocytes. An assay for detection of aneuploidy inducing agent. Mutat Res 1990; 234: 263-268. https://doi.org/10.1016/0165-1161(90)90038-P DOI: https://doi.org/10.1016/0165-1161(90)90038-P

Yu J, Ma Y, Drisko J, Chen Q. Antitumor activities of Rauwolfia vomitoria extract and potentiation of carboplatin effects against ovarian cancer. Curr Therapeu Res 2013; 75: 8-14. https://doi.org/10.1016/j.curtheres.2013.04.001 DOI: https://doi.org/10.1016/j.curtheres.2013.04.001

Yondo J, Fomekong G, Komtangui M. In vitro antioxidant potential and phytochemical constituents of three Cameroonian medicinal plants used to manage parasitic diseases. Pharmacology Online 2006; 1: 648-657.

Beljanski M. Three alkaloids as selective destroyers of cancer cells in mice. Synergy with classic anticancer drugs. Oncol 1986; 43: 198-203. https://doi.org/10.1159/000226363 DOI: https://doi.org/10.1159/000226363

Kim D, You K, Liu M. GADD153-mediated anticancer effects of N-(4-hydroxyphenyl) retinamide on human hepatoma cell. J Biol Chem 2002; 277: 38930-38938. https://doi.org/10.1074/jbc.M205941200 DOI: https://doi.org/10.1074/jbc.M205941200

Luethy J, Holbrook N. Activation of the gadd153 promoter by genotoxic agents. A rapid and specific response to DNA damage. Cancer Res 1992; 5: 5-10.

Karmaker R, Banerjee A, Datta S, Chatterjee M. Influence of cadmium intoxification on hepatic lipid peroxidation, glutathione level and glutathione-S-transferase and gammaglutamyl transpeptidase activities. Correlation with chromosome aberration in bone marrow cells. J Environ Pathol Toxicol Oncol 1999; 18: 277-287.

Lee D, Blomhoff R, Jacobs D. Is serum gamma glutamyl transferase a marker of oxidative stress? Free Radic Res 2004; 38: 535-539. https://doi.org/10.1080/10715760410001694026 DOI: https://doi.org/10.1080/10715760410001694026

Odunola O, Akinwumi K, Ogunbiyi B, Tugbobo O. Interaction and enhancement of the toxic effects of sodium arsenite and lead acetate in wistar rats. Afr J Biomed Res 2007; 10: 59-65. DOI: https://doi.org/10.4314/ajbr.v10i1.48972

Jayakumar T, Ramesh E, Geraldine P. Antioxidant activity of the oyster mushroom Pleurotus ostreatus on CCl4-induced liver injury in rats. Food Chem Toxicol 2006; 44: 1989-96. https://doi.org/10.1016/j.fct.2006.06.025 DOI: https://doi.org/10.1016/j.fct.2006.06.025

Gaskill C, Miller L, Mattoon J, et al. A. Liver histopathology and liver serum alanine aminotransferase and akaline phosphatase activities in epileptic dogs receiving phenobarbital. Vet Pathol 2005; 42: 147-160. https://doi.org/10.1354/vp.42-2-147 DOI: https://doi.org/10.1354/vp.42-2-147

Srinivas S, Prabhath N, Raghavender M, Yerramill A. Effect of arsenic and chromium on the serum amino-transferases activity in Indian Major Carp Labeo rohita. Int J Environ Res Public Health 2007; 4(3): 224-227. https://doi.org/10.3390/ijerph2007030005 DOI: https://doi.org/10.3390/ijerph2007030005

Mandal C, Das S, Basu M, Rohini N, Nirmalendu D. Hepatoprotective activity of liposomal flavonoid against arsenite-induced liver fibrosis. JPET 2007; 320: 994-1001. https://doi.org/10.1124/jpet.106.114215 DOI: https://doi.org/10.1124/jpet.106.114215

Das AK, Sujit B, Ranabir S, et al. Protective effect of Corchorus olitorius leaves on sodium arsenite-induced toxicity in experimental rats. Food Chem Toxicol 2010; 48: 326-335. https://doi.org/10.1016/j.fct.2009.10.020 DOI: https://doi.org/10.1016/j.fct.2009.10.020

Downloads

Published

2018-10-24

How to Cite

Kazeem A. Akinwumi, Kazeem A. Akinwumi, Osifeso O. Olabode, Osifeso O. Olabode, Adedoja A. Wakeel, & Adedoja A. Wakeel. (2018). The Protective Effect of Methanol Extract of Rauvolfia vomitoria against the Clastogenicity and Hepatotoxicity of Sodium Arsenite in Mice. Journal of Cancer Research Updates, 7(4), 109–118. https://doi.org/10.30683/1929-2279.2018.07.04.2

Issue

Section

Articles
Loading...