Molecular Genetic Study of the Allelic State of the Cell Cycle Genes (TP53, BRCA1) and Features of the Regulation of the Cytokine Cascade in Breast Cancer

Authors

  • S.K. Gantsev Scientific Research Institute of Oncology, Oncology Chair with Oncology, and Pathoanatomy courses of Further Professional Education, BaskortostanState University of Medicine, Russia
  • V.Y. Gorbunova Chair of Genetics, M. Akmully Baskortostan State Pedagogical University, Ufa, Russia
  • G.F. Galikeeva Chair of Genetics, M. Akmully Baskortostan State Pedagogical University, Ufa, Russia
  • E.V. Vorobyeva Chair of Genetics, M. Akmully Baskortostan State Pedagogical University, Ufa, Russia
  • E.M. Vasilyeva Chair of Genetics, M. Akmully Baskortostan State Pedagogical University, Ufa, Russia
  • R.A. Rustamhanov Scientific Research Institute of Oncology, Oncology Chair with Oncology, and Pathoanatomy courses of Further Professional Education, BaskortostanState University of Medicine, Russia

DOI:

https://doi.org/10.6000/1929-2279.2013.02.03.6

Keywords:

Breast cancer, tumor suppressor, cytokines, nucleotide substitutions, predisposition.

Abstract

 This article contains the analysisof mutationsin genesthat regulate thecell cycle (TP53andBRCA1)andclassificationrelating totumor suppressor. Shown that the"risk"alleles of thesegenesmay contribute totumor development,butthe activation ofthe immune systemcytokine spectrumof patients canprevent theirdestructivedegeneration.The authors proposed apersonalizedapproach tothe study for thepreventionof possibleproliferative processes. This is confirmed byreversal of "risk" allelesstudied genesin tumors in operated patients with cytokine physiologically normal status.

References

Logan D. The mitochondrial compartment. J Exper Bot 2004; 2: 9.

Croce A, D'Agostino L, Moretti A, Augurio A. Parotid surgery in patients over seventy-five years old. Acta Otorhinolaryngol Ital 2008; 28(5): 231-38.

Payne H, Pelz F, Brooks R, Horrocks L, Kemp A, Webb E, et al. Benefits of interprofessional learning: an interprofessional MSc in child health. Hospital Med 2005; 66: 239-41.

Kopnin BP. Diverse P53: diversity of forms, functions, tumorsuppressive and oncogenic activities. Clin Oncohaematol 2008; 1(1): 2-9.

Phillips H. The role of the p53 tumour suppressor gene in human breast cancer. Clin Oncol 1999; 11(3): 148-55. http://dx.doi.org/10.1053/clon.1999.9032

Vousden K, Lane D. p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8(4): 275-83. http://dx.doi.org/10.1038/nrm2147

Zheltuhin AO, Chumakov PM. Routine and inducible functions of gene P53. Biol Chem Succes 2010; 50: 447-54.

Chumakov PM. P53 protein and its universal functions in multicellular organism. Biol Chem Success 2007; 47: 3-52.

Ellis RE, Yuan J, Horvitz HR. Cytokines in ascites fluid from ovarion carcinoma. Cancer Lett 2002; 61: 243-53.

Berezhnaya NM. Immunity system cells’ role in tumor’s microenvironment. Immunity system cells’ cooperation with other microenvironment components. Oncology 2009; 11(2): 86-93.

Durum SK, Oppenheim JJ. Proinflammatory cytokines and immunity. Fundamental Immunol 1993; 1: 801-35.

Soussi T, Fromentel C, May P. Structural aspects of the p53 protein in relation to gene evolution. Oncogene 1990; 5: 945-52.

Denisov EV, Litvyakov NV, Slonimskaya EM, Malinovskaya EA, Babishkina NN, Stegniy VN, et al. Investigation of Arg72Pro, polymorphism and gene TP53 somatic mutation correlation in breast cancer patients group. Mol Biol Technol Pract Med 2009; 13: 66-74.

Galikeeva GF, Vasilyeva EM, Kayumova LR, Gumerova OV, Vorobyeva EV, Gorbunova VY. Analisys of polymorphous genes variations of xenobiotics GSTM1 and p53 biotransformation in breast cancer patients group. Orenburg State University Herald 2009; 4: 659-61.

Kinzler KW, Vogelstein B. Life (and death) in a malignant tumour. Nature 1996; 379: 19-20. http://dx.doi.org/10.1038/379019a0

Weinberg RA. How cancer arises. Sci Amer 1996; 275: 32-41. http://dx.doi.org/10.1038/scientificamerican0996-62

Deng W, Wu Y, Luo L, Wang S, Tang W, Zhang Y. Expression of estrogen sulfotransferase in breast tissues and the regulation of ESTmRNA by estrogen. Zhonghua Yi Xue Za Zhi 2003; 83(21): 1891-94.

Crowe D, Lee M. New role for nuclear hormone receptors and coactivators in regulation of BRCA1-mediated DNA repair in breast cancer cell lines. Breast Cancer Res 2006; 8: R1. http://dx.doi.org/10.1186/bcr1362

Park J, Irvine R, Buchnan G. Breast cancer susceptibility gene 1 (BRCA1) is a coactivator of the androgen reсeptor. Cancer Res 2000; 60: 5946-49.

Zhu B, Cong W, Wang H. WAF1/CIP1 gene expression in human hepatocellular carcinoma and its relationship with p53 mutation. Zhonghua Gan Zang Bing Za Zhi (Journal of Hepatology) 1999; 7(4): 217-20.

Walker K, Levine A. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 1996; 93(26): 15335-40. http://dx.doi.org/10.1073/pnas.93.26.15335

Sakamuro D, Sabbatini P, White E, Prendergast G. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 1997; 15(8): 887-98. http://dx.doi.org/10.1038/sj.onc.1201263

Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L, Debussche L. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. Eur Mol Biol Organ J 1998; 17(16): 4668-79.

Dumont P, Leu J, Della-Pietra A, George D, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 2003; 33(3): 357-65. http://dx.doi.org/10.1038/ng1093

Barel D, Avigad S, Cohen I. A novel germline p53 insertion/duplication mutation in intron 6 in a Li-Fraumeni Family. Cancer Res 1994; 54:1298-304.

Wu X, Zhao H, Amos C. p53 Genotypes and haplotypes associated with lung cancer susceptibility and ethnicity. J Natl Cancer Instit 2002; 94(9): 681-90. http://dx.doi.org/10.1093/jnci/94.9.681

Biros E, Kalina I, Kohut A. Germ line polymorphisms of the tumor suppressor gene p53 and lung cancer. Lung Cancer 2001; 31: 157-62. http://dx.doi.org/10.1016/S0169-5002(00)00188-4

Liang H, Lunec J. Characterisation of a novel p53 downregulated promoter in intron 3 of the human MDM2 oncogene. Gene 2005; 361: 112-18. http://dx.doi.org/10.1016/j.gene.2005.07.018

Bochar D, Wang L, Beniya H, Kinev A, Xue Y, Lane W, et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 2000; 102(2): 257-65. http://dx.doi.org/10.1016/S0092-8674(00)00030-1

Daly AK, Day CP, Donaldson PT. Polymorphisms in Immunoregulatory Genes. Am J Pharmacogenomics 2002; 2: 13-23. http://dx.doi.org/10.2165/00129785-200202010-00002

Hurme M, Santtila S. IL-1 receptor antagonist (IL-1RA) plasma levels are co-ordinately regulated by both IL-1RA and IL-1β genes. Eur J Immunol 1998; 28: 2598-602. http://dx.doi.org/10.1002/(SICI)1521-4141(199808)28:08<2598::AID-IMMU2598>3.0.CO;2-K

Santtila S, Savinainen K, Himure M. Presence of the IL-1RA allele 2 (IL1RN*2) is associated with enhanced IL-1beta production in vitro. Scand J Immunol 1998; 47: 195-98. http://dx.doi.org/10.1046/j.1365-3083.1998.00300.x

Grimm C, Kantelhardt E, Heinze G, Polterauer S, Zeillinger R, Kölbl H, et al. The prognostic value of four interleukin-1 gene polymorphisms in Caucasian women with breast cancer: a multicenter study. Cancer 2009; 6: 78.

Mustea A, Sehouli J, Könsgen D, Stengel D, Sofroni D, Lichtenegger W. Interleukin 1 receptor antagonist (IL-1RA) polymorphism in women with cervical cancer. Anticancer Res 2003; 23: 1099-102.

Sehouli J, Mustea A, Koensgen D, Lichtenegger W. Interleukin-1 receptor antagonist gene polymorphism in epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 2003; 11: 1205-13.

Brull DJ, Montgomery H, Sanders J, Dhamriat S, Luong L, Rumley A, et al. Intrleukin – 6 gene -174G.>C and -572 G>C promoter polymorphisms are strong predictors of plasma intrleukin – 6 levels after coronary artery bypass sugrey. Arterioscler Thromb Vask Biol 2001; 21: 1458-63. http://dx.doi.org/10.1161/hq0901.094280

Carpi A, Nicolini A, Antonelli A, Ferrari P, Rossi G. Cytokines in the management of high risk or advanced breast cancer: an update and expectation. Curr Cancer Drug Targets 2009; 9(8): 888-903. http://dx.doi.org/10.2174/156800909790192392

Drachenberg DE, Elgamal AA, Rowbotham R. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate 1999; 41: 127-33. http://dx.doi.org/10.1002/(SICI)1097-0045(19991001)41:2<127::AID-PROS7>3.0.CO;2-H

Hoosein N, Abdul M, McCabe R. Clinical significance of elevation in neuroendocrine factors and interleukin-6 in metastatic prostate cancer. Urol Oncol 1995; 1: 246-51. http://dx.doi.org/10.1016/1078-1439(96)00012-9

Lu C, Rak JW, Kerbel RS. Interleukin-6 in progression of human solid tumors: transitional changes in the regulation of cell growth, apoptosis and angiogenesis. Cancer J 1997; 10: 256-61.

Teletaeva GM. Cytokines and antitumor immunity. Pract Oncol 2007; 8(4): 211-18.

Gantsev SK, Gorbunova VY, Galikeeva GF, Vorobyeva EV, Vasilyeva EM, Rustamhanov RA. Oncosuppression genes functioning (ТР53, BRCA1) and their cooperation with cytokines during breast cancer. Creative oncology and surgery – electronic theoretical and practical magazine 2012 (April); 23099 signs. url:http:/eoncosurg.com/?p=2273.

Thomas M, Kalita A, Labrecque S. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 1999; 19(2): 1092-100.

Bourdon JC, Fernandes K, Murray-Zmijewski F. p53 isoforms can regulate p53 transcriptional activity. Genes Dev 2005; 19(18): 2122-37. http://dx.doi.org/10.1101/gad.1339905

Whibley C, Pharoah PD, Hollstein M. p53 polymorphisms: cancer implications. Nat Rev Cancer 2009; 9(2): 95-107. http://dx.doi.org/10.1038/nrc2584

Dimitrakakis C, Konstadoulakis M, Messaris E, et al. Molecular markers in breast cancer: can we use c-erbB-2, p53, bcl-2 and bax gene expression as prognostic factors. Breast 2002; 11(4): 279-85. http://dx.doi.org/10.1054/brst.2002.0445

Feki A, Irmgard Irminger-Finger. Critical reviews in oncology. Hematology 2004; 52(2): 103-16. http://dx.doi.org/10.1016/j.critrevonc.2004.07.002

Oliver M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC. TP53 mutation spectra and load: a toll for generating hypotheses on the etiology of cancer. IARC Sci Publ 2004; 157: 247-70.

Kadagidze ZG. Cytokines. Pract Oncol 2003; 3: 131-39.

Rokavec M, Wu W, Luo J. Il-6 mediated suppression of miR-200c directs constitutive activation of inflammatory signalling circuit driving transformation and tumorigenisis. Mol Cell 2012; 45(6): 777-89. http://dx.doi.org/10.1016/j.molcel.2012.01.015

Sangaletti S, Tripodo C, Ratti C. Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis. Cancer Res 2010; 70: 7764-75. http://dx.doi.org/10.1158/0008-5472.CAN-10-0471

Downloads

Published

2013-09-28

How to Cite

S.K. Gantsev, V.Y. Gorbunova, G.F. Galikeeva, E.V. Vorobyeva, E.M. Vasilyeva, & R.A. Rustamhanov. (2013). Molecular Genetic Study of the Allelic State of the Cell Cycle Genes (TP53, BRCA1) and Features of the Regulation of the Cytokine Cascade in Breast Cancer. Journal of Cancer Research Updates, 2(3),  211–219. https://doi.org/10.6000/1929-2279.2013.02.03.6

Issue

Section

Articles