Cancer Stem Cells: A Review of the Literature and the Implications in Head and Neck Cancer

Authors

  • Brianna N. Harris Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, USA
  • Uttam K. Sinha Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, USA

DOI:

https://doi.org/10.6000/1929-2279.2013.02.03.4

Keywords:

Stem cells, cancer stem cells, head and neck, squamous cell carcinoma, hypoxia inducible factor, curcumin, cisplatin.

Abstract

 In the last few decades, stem cells have been the focus of researchers in an effort to understand the molecular pathways involved in tissue regeneration. By studying normal cell interactions, researchers have since identified cancer stem cells and demonstrated their role in tumorigenesis and metastasis. The authors aimed to review the major molecular pathways involved in tumorigenesis, the role of cancer stem cells, and emerging therapies that target these pathways in squamous cell carcinoma of the head and neck.

References

Lukaszewicz AI, McMillan MK, and Kahn M. Small molecules and stem cells. Potency and lineage commitment: the new quest for the fountain of youth. J Med Chem 2010; 53: 3439-53. http://dx.doi.org/10.1021/jm901361d

Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-7. http://dx.doi.org/10.1126/science.282.5391.1145

Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227: 271-8. http://dx.doi.org/10.1006/dbio.2000.9912

Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 2001; 19: 193-204. http://dx.doi.org/10.1634/stemcells.19-3-193

Byrne JA. Generation of isogenic pluripotent stem cells. Hum Mol Genet 2008; R37-41. http://dx.doi.org/10.1093/hmg/ddn053

Warburton D, Perin L, Defilippo R, Bellusci S, Shi W, Driscoll B. Stem/progenitor cells in lung development, injury repair, and regeneration. Proc. Am Thorac Soc 2008; 5: 703-6. http://dx.doi.org/10.1513/pats.200801-012AW

Yacoub M, Suzuki K, Rosenthal N. The future of regenerative therapy in patients with chronic heart failure. Nat Clin Pract Cardivasc Med 2006; 3(Suppl 1): S133-5. http://dx.doi.org/10.1038/ncpcardio0401

Taupin P. Stroke-induced neurogenesis: physiopathology and mechanisms. Curr Neurovasc Res 2006; 3: 67-72. http://dx.doi.org/10.2174/156720206775541769

Takahaski K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-76. http://dx.doi.org/10.1016/j.cell.2006.07.024

Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 2007; I: 39-49. http://dx.doi.org/10.1016/j.stem.2007.05.012

Yamanaka S. A fresh look at iPS cells. Cell 2009; 137: 13-7. http://dx.doi.org/10.1016/j.cell.2009.03.034

Li Y, Laterra J. Cancer stem cells: Distinct entities or dynamically regulated phenotypes? Cancer Res 2012; 72: 576-80. http://dx.doi.org/10.1158/0008-5472.CAN-11-3070

Chambers I, Colby D, Roberston M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643-55. http://dx.doi.org/10.1016/S0092-8674(03)00392-1

Hay DC, Sutherland L, Clark J, Burdon T. Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 2004; 22: 225-35. http://dx.doi.org/10.1634/stemcells.22-2-225

Matin MM, Walsh JR, Gokhale PJ, et al. Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells 2004; 22: 659-68. http://dx.doi.org/10.1634/stemcells.22-5-659

Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631-42. http://dx.doi.org/10.1016/S0092-8674(03)00393-3

Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998; 95: 379-91. http://dx.doi.org/10.1016/S0092-8674(00)81769-9

Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz-Eldor J, Daley GQ. High-efficiency RNA interference in human embryonic stem cells. Stem Cells 2005; 23: 299-305. http://dx.doi.org/10.1634/stemcells.2004-0252

Lapidot T, SIrard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645-8. http://dx.doi.org/10.1038/367645a0

Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730-7. http://dx.doi.org/10.1038/nm0797-730

Zhang M, Rosen JM. Stem cells in the etiology and treatment of cancer. Curr Opin Genet Dev 2006; 16: 60-4. http://dx.doi.org/10.1016/j.gde.2005.12.008

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983-8. http://dx.doi.org/10.1073/pnas.0530291100

Cancer Facts and Figures, 2012. American Cancer Society. Obtained from http://www.cancer.org/acs/groups/content/ @epidemiologysurveilance/documents/document/acspc-031941.pdf, accessed July 1, 2012.

Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med 2008; 359: 1143-54. http://dx.doi.org/10.1056/NEJMra0707975

Vira D, Basak SK, Veena MS, Wang MB, Batra RK, Srivatsan ES. Cancer stem cells, microRNAs, and therapeutic strategies including natural products. Cancer Metast Rev 2012; 1-20.

Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Natl Acad Sci USA 2007; 104: 973-8. http://dx.doi.org/10.1073/pnas.0610117104

Davis SJ, Divi V, Owen JH, et al. Metastatic potential of cancer stem cells in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2010; 136: 1260-6. http://dx.doi.org/10.1001/archoto.2010.219

Takahashi E, Nagano O, Ishimoto T, et al. Tumor necrosis factor-alpha regulates transforming growth factor-beta-dependent epithelial-mesenchymal transition by promoting hyaluronan-CD44-moesin interaction. J Biol Chem 2010; 285: 4060-73. http://dx.doi.org/10.1074/jbc.M109.056523

Oh SY, Kang HJ, Kim YS, Kim H, Lim YC. CD44-negative cells in head and neck squamous cell carcinoma have stem-cell like traits. Eur J Cancer 2012; 1-9.

Bhaijee F, Pepper DJ, Pitman KT, Bell D. Cancer stem cells in head and neck squamous cell carcinoma: A review of current knowledge and future applications. Basic Sci Rev 2012; 894-9.

Visus C, Ito D, Amoscato A, et al. Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8þ T- cell-defined tumor antigen in squamous cell carcinoma of the head and neck. Cancer Res 2007; 67: 10538-45. http://dx.doi.org/10.1158/0008-5472.CAN-07-1346

Zhang P, Zhang Y, Mao L, Zhang Z, Chen W. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett 2009; 277: 227-34. http://dx.doi.org/10.1016/j.canlet.2008.12.015

Zhang Q, Shi S, Yen Y, Brown J, Ta JQ, Le AD. A subpopulation of CD133+ cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett 2010; 289L: 151-60. http://dx.doi.org/10.1016/j.canlet.2009.08.010

Chen H, Zhou L, Dou T, Wan G, Tang H, Tian J. BMI1’s maintenance of the proliferative capacity of laryngeal cancer stem cells. Head & Neck 2011; 33: 1115-25. http://dx.doi.org/10.1002/hed.21576

Clay MR, Tabor M, Owen J, et al. Single-marker identification of head anc neck squamous cell cancer stem cells with aldehyde dehydrogenase. Head & Neck 2010; 32: 1195-201. http://dx.doi.org/10.1002/hed.21315

Albers AE, Chen C, Koberle B, et al. Stem cells in squamous head and neck cancer. Crit Rev Oncol/Hematol 2012; 81: 224-40. http://dx.doi.org/10.1016/j.critrevonc.2011.03.004

Sun S, Wang Z. Head neck squamous cell carcinoma c-Met(+) cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. Int J Cancer 2011; 129: 2337-48. http://dx.doi.org/10.1002/ijc.25927

Tabor MH, Clay MR, Owen JH, et al. Head and neck cancer stem cells: the side population. Laryngoscope 2011; 121: 527-33. http://dx.doi.org/10.1002/lary.21032

Song J, Chang I, Chen Z, Kang M, Wang CY. Characterization of side populations in HNSCC: highly invasive, chemo resistant and abnormal Wnt signaling. PLoS One 201; 5: e11456.

Mannelli G, Gallo O. Cancer stem cells hypothesis and stem cells in head and neck cancers. Cancer Treatment Reviews 2012; 38: 515-39. http://dx.doi.org/10.1016/j.ctrv.2011.11.007

Lin Q, Yun Z. Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics. Cancer Biol Ther 2012: 9: 949-56. http://dx.doi.org/10.4161/cbt.9.12.12347

Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN. Hypoxia inducible factors in cancer stem cells. Br J Cancer 2010; 102: 789-95. http://dx.doi.org/10.1038/sj.bjc.6605551

Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glimoa stem cells. Cancer Cell 2009; 15: 501-13. http://dx.doi.org/10.1016/j.ccr.2009.03.018

Griguer CE, Oliva CR, Gobin E, et al. CD133 is a marker of bioenergetics stress in human glioma. PloS One 2008; 3: 3655. http://dx.doi.org/10.1371/journal.pone.0003655

Soeda A, Park M, Lee D, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 2009; 28: 949-59. http://dx.doi.org/10.1038/onc.2009.252

Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756-60. http://dx.doi.org/10.1038/nature05236

Wend P, Holland JD, Ziebold U, Birchmeier W. Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol 2010; 21: 855-63. http://dx.doi.org/10.1016/j.semcdb.2010.09.004

Kypta R, Waxman J. Wnt/β-catenin signalling in prostate cancer. Nat Rev Urol 2012; 1-11.

Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127: 469-80. http://dx.doi.org/10.1016/j.cell.2006.10.018

Hoffmeyer K, Raggiloi A, Rudloff S, et al. Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science 2012; 336: 1549-54. http://dx.doi.org/10.1126/science.1218370

Yao H, Ashihara E, Maekawa T. Targeting the Wnt/β-catenin signaling pathway in human cancers. Informa 2011; 15: 873-87.

Hu FW, Tsai LL, Yu CH, Chen PN, Chou MY, Yu CC. Impairment of tumor-initiating stem-lie property and reversal of epithelial-mesenchymal transdifferentiation in head and neck cancer by resveratrol treatment. Mol Nutr Food Res 2012; 1-12.

Chen C, Zimmermann M, Tinhofer I, Kaufmann A, Albers A. Epithelial-to-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma. Cancer Lett 2012; 1-10. http://dx.doi.org/10.1016/j.canlet.2011.09.042

Zhang Z, Filho MSA, Nor JE. The biology of head and neck cancer stem cells. Oral Oncol 2012; 48: 1-9. http://dx.doi.org/10.1016/j.oraloncology.2011.10.004

Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: Concepts and molecular links. Semin Cancer Biol 2012; 22: 396-403. http://dx.doi.org/10.1016/j.semcancer.2012.04.001

Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells. An integrated concept of malignant tumor progression. Nat Rev Cancer 2005; 5: 744-9. http://dx.doi.org/10.1038/nrc1694

Geng S, Guo Y, Wang Q, Li L, Wang J. Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial-mesenchymal transition in squamous cell carcinoma. Arch Dermatol Res 2012.

Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704-15. http://dx.doi.org/10.1016/j.cell.2008.03.027

Mimeault M, Batra SK. Targeting of cancer stem/progenitor cells plus stem cell-based therapies: the ultimate hope for treating and curing aggressive and recurrent cancers. Panminerva Med 2008; 50: 3-18.

Chu G. Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem 1994; 269: 787-90.

Yilmaz T, Jiffar T, de la Garza G, et al. Theraputic targeting of Trk suppresses tumor proliferation and enhances cisplatin activity in HNSCC. Cancer Biol Ther 2010; 10: 644-53. http://dx.doi.org/10.4161/cbt.10.6.12782

Saha S, Adhikary A, Bhattacharyya P, Das T, Sa G. Death by design: where curcumin sensitizes drug-resistant tumours. Anticancer Res 2012; 32: 2567-84.

Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nonparticles inhibit ovarian cancer cell growth. J Ovarian Res 2010; 3: 11. http://dx.doi.org/10.1186/1757-2215-3-11

Abuzeid WM, Davis S, Tang AL, et al. Sensitization of head and neck cancer to cisplatin through the use of a novel curcumin analog. Arch Otolaryngol Head Neck Surg 2011; 137: 499-507. http://dx.doi.org/10.1001/archoto.2011.63

Wu AW, Basak SK, Lai C, Veena MS, Wang MB, Srivatsan ES. CD44 High head and neck cancer cells demonstrate increased cell growth and chemotherapeutic resistance. AACR 101st Annual Meeting 2010, Washington DC, 12-21 April 2010.

Lim YC, Kang HJ, Kim YS, Choi EC. All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression of Wnt/β-catenin pathway. Eur J Cancer 2012; 2-9.

Masood R, Roy I, Zu S, et al. Gold nanorod-sphingosine kinase siRNA nanocomplexes: a novel therapeutic tool for potent radiosensitization of head and neck cancer. Integr Biol 2012; 4: 132-41. http://dx.doi.org/10.1039/c1ib00060h

Downloads

Published

2013-09-28

How to Cite

Brianna N. Harris, & Uttam K. Sinha. (2013). Cancer Stem Cells: A Review of the Literature and the Implications in Head and Neck Cancer . Journal of Cancer Research Updates, 2(3), 186–193. https://doi.org/10.6000/1929-2279.2013.02.03.4

Issue

Section

Articles