Epsin Family of Endocytic Adaptor Proteins as Oncogenic Regulators of Cancer Progression
DOI:
https://doi.org/10.6000/1929-2279.2013.02.03.2Keywords:
Epsin, Cancer, VEGF, Notch, Angiogenesis.Abstract
Tumor angiogenesis, tumor cell proliferation, and tumor cell migration result from an accumulation of oncogenic mutations that alter protein expression and the regulation of various signaling cascades. Epsins, a small family of clathrin-mediated endocytic adaptor proteins, are reportedly upregulated in a variety of cancers. Importantly, loss of epsins protects against tumorigenesis, thus supporting an oncogenic role for epsins in cancer. Although a clear relationship between epsins and cancer has evolved, the importance of this relationship with regards to cancer progression and anti-cancer therapies remains unclear. In this review, we summarize epsins’ role as endocytic adaptors that modulate VEGF and Notch signaling through the regulated internalization of VEGFR2 and trans-endocytosis of Notch receptors. As both VEGF and Notch signaling have significant implications in angiogenesis, we focus on the newly identified role for epsins in tumor angiogenesis. In addition to epsins’ canonical role in receptor-mediated endocytosis, and the resulting downstream signaling regulation, we discuss the non-canonical role of epsins as regulators of small GTPases and the implications this has on tumor cell proliferation and invasion. Given epsins’ identified roles in tumor angiogenesis, tumor cell proliferation, and tumor cell invasion, we predict that the investigative links between epsins and cancer will provide new insights into the importance of endocytic adaptors and their potential use as future therapeutic targets.
References
Chen H, Fre S, Slepnev VI, Capua MR, Takei K, Butler MH, et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 1998; 394(6695): 793-7. Epub 1998/09/02. http://dx.doi.org/10.1038/29555
Rosenthal JA, Chen H, Slepnev VI, Pellegrini L, Salcini AE, Di Fiore PP, et al. The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. J Biol Chem 1999; 274(48): 33959-65. Epub 1999/11/24. http://dx.doi.org/10.1074/jbc.274.48.33959
Shih SC, Katzmann DJ, Schnell JD, Sutanto M, Emr SD, Hicke L. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat Cell Biol 2002; 4(5): 389-93. Epub 2002/05/04. http://dx.doi.org/10.1038/ncb790
Wendland B. Epsins: adaptors in endocytosis? Nat Rev Mol Cell Biol 2002; 3(12): 971-7. Epub 2002/12/04. http://dx.doi.org/10.1038/nrm970
Chen H, De Camilli P. The association of epsin with ubiquitinated cargo along the endocytic pathway is negatively regulated by its interaction with clathrin. Proc Natl Acad Sci USA 2005; 102(8): 2766-71. Epub 2005/02/11. http://dx.doi.org/10.1073/pnas.0409719102
Chen H, Ko G, Zatti A, Di Giacomo G, Liu L, Raiteri E, et al. Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice. Proc Natl Acad Sci USA 2009; 106(33): 13838-43. Epub 2009/08/12. http://dx.doi.org/10.1073/pnas.0907008106
Spradling KD, McDaniel AE, Lohi J, Pilcher BK. Epsin 3 is a novel extracellular matrix-induced transcript specific to wounded epithelia. J Biol Chem 2001; 276(31): 29257-67. Epub 2001/05/22. http://dx.doi.org/10.1074/jbc.M101663200
Ko G, Paradise S, Chen H, Graham M, Vecchi M, Bianchi F, et al. Selective high-level expression of epsin 3 in gastric parietal cells, where it is localized at endocytic sites of apical canaliculi. Proc Natl Acad Sci USA 2010; 107(50): 21511-6. Epub 2010/12/01. http://dx.doi.org/10.1073/pnas.1016390107
Hofmann K, Falquet L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci 2001; 26(6): 347-50. Epub 2001/06/19. http://dx.doi.org/10.1016/S0968-0004(01)01835-7
De Camilli P, Chen H, Hyman J, Panepucci E, Bateman A, Brunger AT. The ENTH domain. FEBS Lett 2002; 513(1): 11-8. Epub 2002/03/26. http://dx.doi.org/10.1016/S0014-5793(01)03306-3
Polo S, Sigismund S, Faretta M, Guidi M, Capua MR, Bossi G, et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 2002; 416(6879): 451-5. Epub 2002/03/29. http://dx.doi.org/10.1038/416451a
Polo S, Confalonieri S, Salcini AE, Di Fiore PP. EH and UIM: endocytosis and more. Science's STKE: Signal Transduction Knowledge Environment 2003; 2003(213): re17. Epub 2003/12/18.
Reider A, Wendland B. Endocytic adaptors--social networking at the plasma membrane. J Cell Sci 2011; 124(Pt 10): 1613-22. Epub 2011/05/04. http://dx.doi.org/10.1242/jcs.073395
Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 2001; 291(5506): 1047-51. Epub 2001/02/13. http://dx.doi.org/10.1126/science.291.5506.1047
Ford MG, Mills IG, Peter BJ, Vallis Y, Praefcke GJ, Evans PR, et al. Curvature of clathrin-coated pits driven by epsin. Nature 2002; 419(6905): 361-6. Epub 2002/09/28. http://dx.doi.org/10.1038/nature01020
Tian X, Hansen D, Schedl T, Skeath JB. Epsin potentiates Notch pathway activity in Drosophila and C. elegans. Development 2004; 131(23): 5807-15. Epub 2004/11/13. http://dx.doi.org/10.1242/dev.01459
Kazazic M, Bertelsen V, Pedersen KW, Vuong TT, Grandal MV, Rodland MS, et al. Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits. Traffic 2009; 10(2): 235-45. Epub 2008/12/05. http://dx.doi.org/10.1111/j.1600-0854.2008.00858.x
Csikos G, Lippai M, Lukacsovich T, Juhasz G, Henn L, Erdelyi M, et al. A novel role for the Drosophila epsin (lqf): involvement in autophagy. Autophagy 2009; 5(5): 636-48. Epub 2009/03/24. http://dx.doi.org/10.4161/auto.5.5.8168
Pasula S, Cai X, Dong Y, Messa M, McManus J, Chang B, et al. Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. J Clin Investig 2012; 122(12): 4424-38. Epub 2012/11/29. http://dx.doi.org/10.1172/JCI64537
Rosse C, L'Hoste S, Offner N, Picard A, Camonis J. RLIP, an effector of the Ral GTPases, is a platform for Cdk1 to phosphorylate epsin during the switch off of endocytosis in mitosis. J Biol Chem 2003; 278(33): 30597-604. Epub 2003/05/31. http://dx.doi.org/10.1074/jbc.M302191200
Mukherjee D, Coon BG, Edwards DF, 3rd, Hanna CB, Longhi SA, McCaffery JM, et al. The yeast endocytic protein Epsin 2 functions in a cell-division signaling pathway. J Cell Sci 2009; 122(Pt 14): 2453-63. Epub 2009/06/18. http://dx.doi.org/10.1242/jcs.041137
Coon BG, Burgner J, Camonis JH, Aguilar RC. The epsin family of endocytic adaptors promotes fibrosarcoma migration and invasion. J Biol Chem 2010; 285(43): 33073-81. Epub 2010/08/17. http://dx.doi.org/10.1074/jbc.M110.124123
Wang Y, Dai Z, Sadee W, Hancock WS. A pharmacoproteomics study of the cancer cell line EKVX using capillary-LC/MS/MS. Mol Pharmaceut 2006; 3(5): 566-78. Epub 2006/10/03. http://dx.doi.org/10.1021/mp060002b
Pawlowski KM, Krol M, Majewska A, Badowska-Kozakiewicz A, Mol JA, Malicka E, et al. Comparison of cellular and tissue transcriptional profiles in canine mammary tumor. J Physiol Pharmacol: An Official J Polish Physiol Soc 2009; 60(Suppl 1): 85-94. Epub 2009/07/23.
Tessneer KL, Pasula S, Cai X, Dong Y, Liu X, Yu L, et al. Endocytic Adaptor Protein Epsin Is Elevated in Prostate Cancer and Required for Cancer Progression. ISRN Oncol 2013; 2013: 8.
Kerbel RS. Tumor angiogenesis. New Engl J Med 2008; 358(19): 2039-49. Epub 2008/05/09. http://dx.doi.org/10.1056/NEJMra0706596
Folkman J. Tumor angiogenesis: therapeutic implications. New Engl J Med 1971; 285(21): 1182-6. Epub 1971/11/18. http://dx.doi.org/10.1056/NEJM197111182852108
Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exper Med 1971; 133(2): 275-88. Epub 1971/02/01. http://dx.doi.org/10.1084/jem.133.2.275
Li JL, Sainson RC, Shi W, Leek R, Harrington LS, Preusser M, et al. Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 2007; 67(23): 11244-53. Epub 2007/12/07. http://dx.doi.org/10.1158/0008-5472.CAN-07-0969
Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 2007; 104(9): 3219-24. Epub 2007/02/14. http://dx.doi.org/10.1073/pnas.0611206104
Sainson RC, Harris AL. Anti-Dll4 therapy: can we block tumour growth by increasing angiogenesis? Trends Mol Med 2007; 13(9): 389-95. Epub 2007/09/08. http://dx.doi.org/10.1016/j.molmed.2007.07.002
Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2(10): 727-39. Epub 2002/10/03. http://dx.doi.org/10.1038/nrc905
Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 2004; 101(45): 15949-54. Epub 2004/11/03. http://dx.doi.org/10.1073/pnas.0407290101
Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer 2007; 7(5): 327-31. Epub 2007/04/26. http://dx.doi.org/10.1038/nrc2130
Foulds L. The experimental study of tumor progression: a review. Cancer Res 1954; 14(5): 327-39. Epub 1954/06/01.
Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003; 33(1): 49-54. Epub 2002/12/07. http://dx.doi.org/10.1038/ng1060
Wang H, Traub LM, Weixel KM, Hawryluk MJ, Shah N, Edinger RS, et al. Clathrin-mediated endocytosis of the epithelial sodium channel. Role of epsin. J Biol Chem 2006; 281(20): 14129-35. Epub 2006/04/01. http://dx.doi.org/10.1074/jbc.M512511200
Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 2006; 21(6): 737-48. Epub 2006/03/18. http://dx.doi.org/10.1016/j.molcel.2006.02.018
Bache KG, Slagsvold T, Stenmark H. Defective downregulation of receptor tyrosine kinases in cancer. EMBO J 2004; 23(14): 2707-12. Epub 2004/07/02. http://dx.doi.org/10.1038/sj.emboj.7600292