Targeting Cancer Stem Cells with Defined Compounds and Drugs

Authors

  • Cord Naujokata Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
  • Stefan Laufer Department of Pharmaceutical/Medical Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany

DOI:

https://doi.org/10.6000/1929-2279.2013.02.01.7

Keywords:

Cancer stem cells (CSCs), novel therapeutics, novel drugs, targeted therapy, combination therapy.

Abstract

: Cancer stem cells (CSCs) are a subpopulation of tumor cells that possess self-renewal and tumor initiation capacity and the ability to give rise to the heterogenous lineages of cancer cells that comprise the tumor. CSCs possess numerous intrinsic mechanisms of resistance to chemotherapeutic drugs, novel tumor-targeted drugs and radiation therapy, allowing them to survive current cancer therapies and to initiate tumor recurrence and metastasis. Recently, different pathways that confer resistance and survival of CSCs, but also compounds and drugs that selectively target some of these pathways in CSCs have been identified. Such compounds and drugs include antibiotics like salinomycin, phytochemicals such as parthenolide, cyclopamine, EGCG, resveratrol, curcumin, sulforaphane and oxymatrine, the small molecule inhibitors vismodegib and repertaxin, monoclonal antibodies and antibody constructs raised against cell surface proteins expressed by CSCs, and, surprisingly, some classical drugs such as metformin, tranilast and thioridazine. These agents exhibit significant anti-CSC activity, alone or in combination with cytostatic drugs or tumor-targeted drugs, as recently shown in vitro and in human xenograft mice. Since current cancer therapies fail to eliminate CSCs, leading to cancer recurrence and progression, selective targeting of CSCs with compounds and drugs introduced herein may represent a novel therapeutic strategy to eradicate cancer.

References

Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105-11. http://dx.doi.org/10.1038/35102167

Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3: 895-902. http://dx.doi.org/10.1038/nrc1232

Ward RJ, Dirks PB. Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol 2007; 2: 175-89. http://dx.doi.org/10.1146/annurev.pathol.2.010506.091847

Dick JE. Stem cell concepts renew cancer research. Blood 2008; 112: 4793-807. http://dx.doi.org/10.1182/blood-2008-08-077941

Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest 2010; 120: 41-50. http://dx.doi.org/10.1172/JCI41004

Hermann PC, Bhaskar S, Cioffi M, Heeschen C. Cancer stem cells in solid tumors. Semin Cancer Biol 2010; 20: 77-84. http://dx.doi.org/10.1016/j.semcancer.2010.03.004

Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313-9. http://dx.doi.org/10.1038/nm.2304

Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 2012; 21: 283-96. http://dx.doi.org/10.1016/j.ccr.2012.03.003

Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells – perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 2006; 66: 9339-44. http://dx.doi.org/10.1158/0008-5472.CAN-06-3126

Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al. Residual breast cancers after conventional therapy display mesemchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 2009; 106: 13820-5. http://dx.doi.org/10.1073/pnas.0905718106

Tehranchi R, Woll PS, Anderson K, Buza-Vidas N, Mizukami T, Mead AJ, et al. Persistant malignant stem cells in del(5q) myelodysplasia in remission. N Engl J Med 2010; 363: 1025-37. http://dx.doi.org/10.1056/NEJMoa0912228

Gerber JM, Smith BD, Ngwang B, Zhang H, Vala MS, Morsberger L, et al. A clinically relevant population of leukemic CD34+CD38- cells in acute myeloid leukemia. Blood 2012; 119: 3571-7. http://dx.doi.org/10.1182/blood-2011-06-364182

An Y, Ongkeko WM. ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol 2009; 5: 1529-42. http://dx.doi.org/10.1517/17425250903228834

Dean M. ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 2009; 14: 3-9. http://dx.doi.org/10.1007/s10911-009-9109-9

Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM, Mumau MD, et al. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst 2010; 102: 1637-52. http://dx.doi.org/10.1093/jnci/djq361

Fuchs D, Daniel V, Sadeghi M, Opelz G, Naujokat C. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem Biophys Res Commun 2010; 394: 1098-104. http://dx.doi.org/10.1016/j.bbrc.2010.03.138

Moitra K, Lou H, Dean M. Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development. Clin Pharmacol Ther 2011; 89: 491-502. http://dx.doi.org/10.1038/clpt.2011.14

Teng Y, Wang X, Wang Y, Ma D. Wnt/β-catenin signaling regulates cancer stem cell in lung cancer A549 cells. Biochem Biophys Res Commun 2010; 392: 373-9. http://dx.doi.org/10.1016/j.bbrc.2010.01.028

Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D, et al. β-catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 2010; 18: 606-18. http://dx.doi.org/10.1016/j.ccr.2010.10.032

Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011; 8: 97-106. http://dx.doi.org/10.1038/nrclinonc.2010.196

Janikowa M, Skarda J. Differentiation pathways in carcinogenesis and in chemo- and radioresistance. Neoplasma 2012; 59: 6-17. http://dx.doi.org/10.4149/neo_2012_002

Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, et al. Hedgehog signaling is essential for maintenance of cancer stem cells in myeloid leukemia. Nature 2009; 458: 776-9. http://dx.doi.org/10.1038/nature07737

Kobune M, Takimoto R, Murase K, Iyama S, Sato T, Kikuchi S, et al. Drug resistance is dramatically restored by Hedgehog inhibitors in CD34+ leukemic cells. Cancer Sci 2009; 100: 948-55. http://dx.doi.org/10.1111/j.1349-7006.2009.01111.x

Wang Z, Kong D, Banerjee S, Ahmad A, Azmi AS, Ali S, et al. Acquisition of epithelial-mesemchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the Notch signaling pathway. Cancer Res 2009; 69: 2400-7. http://dx.doi.org/10.1158/0008-5472.CAN-08-4312

Wang J, Wakerman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 2010; 28: 17-28.

Ma S, Lee TK, Zheng BJ, Chane KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008; 27: 1749-58. http://dx.doi.org/10.1038/sj.onc.1210811

Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling. PLoS Biol 2009; 7: e1000121. http://dx.doi.org/10.1371/journal.pbio.1000121

Gallmeier E, Hermann PC, Mueller MT, Machado JG, Ziesch A, De Toni EN, et al. Inhibition of ataxia teleangiectasia- and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133(+) tumor-initiating cell fraction. Stem Cells 2011; 29: 418-29. http://dx.doi.org/10.1002/stem.595

Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorava K, Holland EC. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma. Genes Dev 2008; 22: 436-48. http://dx.doi.org/10.1101/gad.1627008

Hill R, Wu H. PTEN, stem cells, and cancer stem cells. J Biol Chem 2009; 284: 11755-9. http://dx.doi.org/10.1074/jbc.R800071200

Martelli AM, Evagelisti C, Follo MY, Ramazzotti G, Fini M, Giardino R, et al. Targeting the phosphatidyl 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr Med Chem 2011; 18: 2715-26. http://dx.doi.org/10.2174/092986711796011201

Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555-67. http://dx.doi.org/10.1016/j.stem.2007.08.014

Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 2008; 3: e2428.

Awad O, Yustein JT, Shah P, Gul N, Katuri V, O´Neill A, et al. High ALDH activity identifies chemotherapy-resistant Ewing´s sarcoma stem cells that retain sensitivity to EWS-FLI1 inhibition. PLoS One 2010; 5: e13943. http://dx.doi.org/10.1371/journal.pone.0013943

Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, et al. Aldehyde dehydrogenase 1-positve cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 2010; 16: 45-55. http://dx.doi.org/10.1158/1078-0432.CCR-09-1630

Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756-60. http://dx.doi.org/10.1038/nature05236

Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006; 98: 1777-85. http://dx.doi.org/10.1093/jnci/djj495

Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458: 780-3. http://dx.doi.org/10.1038/nature07733

Ropolo M, Daga A, Griffero F, Foresta M, Casartelli G, Zunino A, et al. Comparative analysis of DNA repair in stem and nonstem glioma cell cultures. Mol Cancer Res 2009; 7: 383-92. http://dx.doi.org/10.1158/1541-7786.MCR-08-0409

Viale A, De Franco F, Orleth A, Cambiaghi V, Guiliani V, Ronchini C, et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 2009; 457: 51-6. http://dx.doi.org/10.1038/nature07618

Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R´s of radiobiology revisited. Stem Cells 2010: 28: 639-48. http://dx.doi.org/10.1002/stem.318

Maugeri-Sacca M, Bartucci M, De Maria R. DNA damage repair pathways in cancer stem cells. Mol Cancer Ther 2012; 11: 1627-36. http://dx.doi.org/10.1158/1535-7163.MCT-11-1040

Kim MR, Choi HK, Cho KB, Kim HS, Kang KW. Involvement of Pin1 induction in epithelial-mesemchymal transition of tamoxifen-resistant breast cancer cells. Cancer Sci 2009; 100: 1834-41. http://dx.doi.org/10.1111/j.1349-7006.2009.01260.x

Chen X, Lingala S, Khoobyari S, Nolta J, Zern MA, Wu J. Epithelial mesenchymal transition and Hedgehog signaling activation are associated with chemoresistance of hepatoma subpopulations. J Hepatol 2011; 55: 838-45. http://dx.doi.org/10.1016/j.jhep.2010.12.043

Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 2002; 99: 16220-5. http://dx.doi.org/10.1073/pnas.252462599

Zhou J, Zhang H, Gu P, Bai J, Margolick JB, Zhang Y. NF-κB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat 2008; 111: 419-27. http://dx.doi.org/10.1007/s10549-007-9798-y

Liu M, Sakamaki T, Casimiro MC, Willmarth ME, Quong AA, Ju X, et al. The canonical NF-κB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res 2010; 70: 10464-73. http://dx.doi.org/10.1158/0008-5472.CAN-10-0732

Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 2008; 8: 545-54. http://dx.doi.org/10.1038/nrc2419

Chiou SH, Kao CL, Chen YW, Chien CS, Hung SC, Lo JF, et al. Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor. PLoS One 2008; 3: e2090. http://dx.doi.org/10.1371/journal.pone.0002090

Piao LS, Hur W, Kim TK, Hong SW, Kim SW, Choi JE, et al. CD133(+) liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett 2012; 315: 129-37. http://dx.doi.org/10.1016/j.canlet.2011.10.012

Lagadec C, Vlashi E, Della Donna L, Dekmezian C, Pajonk F. Radiation-induced reprogramming of breast cancer cells. Stem Cells 2012; 30: 833-44. http://dx.doi.org/10.1002/stem.1058

Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cells 2007; 1: 389-402. http://dx.doi.org/10.1016/j.stem.2007.08.001

Francipane MG, Alea MP, Lombardo Y, Todaro M, Medema JP, Stassi G. Crucial role of interleukin-4 in the survival of colon cancer stem cells. Cancer Res 2008; 68: 4022-5. http://dx.doi.org/10.1158/0008-5472.CAN-07-6874

Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006; 5: 1476-98.

Kruyt FA, Schuringa JJ. Apoptosis and cancer stem cells: implications for apoptosis targeted therapy. Biochem Pharmacol 2010: 80; 423-30. http://dx.doi.org/10.1016/j.bcp.2010.04.010

Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11: 69-82. http://dx.doi.org/10.1016/j.ccr.2006.11.020

Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 2011; 121: 3804-9. http://dx.doi.org/10.1172/JCI57099

Yeung TM, Gandhi SC, Bodmer WF. Hypoxia and lineage specification of cell line-derived colorectal cancer stem cells. Proc Natl Acad Sci USA 2001; 108: 4382-7. http://dx.doi.org/10.1073/pnas.1014519107

Zhou Y, Zhou Y, Shingu T, Feng L, Chen Z, Ogasawara M, et al. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis. J Biol Chem 2011; 286: 32843-53. http://dx.doi.org/10.1074/jbc.M111.260935

Reim F, Dombrowski Y, Ritter C, Buttmann M, Häusler S, Ossadnuk M, et al. Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res 2009; 69: 8058-66. http://dx.doi.org/10.1158/0008-5472.CAN-09-0834

Schatton T, Schütte U, Frank NY, Zhan Q, Hoerning A, Robles SC, et al. Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res 2010; 70: 697-708. http://dx.doi.org/10.1158/0008-5472.CAN-09-1592

Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, et al. Glioma cancer stem cells induce immunosuppressive macrophges/microglia. Neuro Oncol 2011; 12: 1113-25. http://dx.doi.org/10.1093/neuonc/noq082

Gao MQ, Choi YP, Kang S, Youn JH, Cho NN. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 2010; 29: 2672-80. http://dx.doi.org/10.1038/onc.2010.35

Essers MA, Trumpp A. Targeting leukemic stem cells by breaking their dormancy. Mol Oncol 2010; 4: 443-50. http://dx.doi.org/10.1016/j.molonc.2010.06.001

Li L, Bhatia R. Stem cell quiescence. Clin Cancer Res 2011; 17: 4936-41. http://dx.doi.org/10.1158/1078-0432.CCR-10-1499

Maugeri-Sacca M, Vigneri P, De Maria R. Cancer stem cells and chemosensitivity. Clin Cancer Res 2011; 17: 4942-7. http://dx.doi.org/10.1158/1078-0432.CCR-10-2538

Morrison R, Schleicher SM, Sun Y, Niermann KJ, Kim S, Spratt DE, et al. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol 2011; 2011: 941876.

Malik B, Nie D. Cancer stem cells and resistance to chemo and radio therapy. Front Biosci 2012; 4: 2142-9.

Alison MR, Lin WR, Lim SM, Nicholson LJ. Cancer stem cells: in the line of fire. Cancer Treat Rev 2012; 38: 589-98. http://dx.doi.org/10.1016/j.ctrv.2012.03.003

Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131: 1109-23. http://dx.doi.org/10.1016/j.cell.2007.10.054

Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672-9. http://dx.doi.org/10.1093/jnci/djn123

Chiu PP, Jiang H, Dick JE. Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood 2010; 116: 5268-79. http://dx.doi.org/10.1182/blood-2010-06-292300

Al-Ejeh F, Smart CE, Morrison,BJ, Chenevix-Trench G, Lopez JA, Lakhani SR, et al. Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis 2011; 32: 650-8. http://dx.doi.org/10.1093/carcin/bgr028

Velasco-Velazquez MA, Popov VM, Lisanti MP, Pestell RG. The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol 2011; 179: 2-11. http://dx.doi.org/10.1016/j.ajpath.2011.03.005

Ghiaur G, Gerber J, Jones RJ. Cancer stem cells and minimal residual disease. Stem Cells 2012; 30: 89-93. http://dx.doi.org/10.1002/stem.769

Era T. Bcr-Abl is a molecular switch for the decision for growth and differentiation in hematopoietic stem cells. Int J Haematol 2002; 76: 35-43. http://dx.doi.org/10.1007/BF02982716

Graham SM, Jorgenson HG, Allan E, Pearson C, Alcorn MJ, Richmond L, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319-25. http://dx.doi.org/10.1182/blood.V99.1.319

Holtz MS, Forman SJ, Bhatia R. Nonproliferating CML CD34+ progenitors are resistant to apoptosis by a wide range of proapoptotic stimuli. Leukemia 2005; 19: 1034-41. http://dx.doi.org/10.1038/sj.leu.2403724

Oravecz-Wilson KI, Philips ST, Yilmaz OH, Ames HM, Li L, Crawford BD, et al. Persistence of leukemia-initiating cells in a conditional knockin model of imatinib-responsive myeloproliferative disorder. Cancer Cell 2009; 16: 137-48. http://dx.doi.org/10.1016/j.ccr.2009.06.007

Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL, et al. Persistance of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003; 101: 4701-7. http://dx.doi.org/10.1182/blood-2002-09-2780

Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therpeutic agent for chronic myeloid leukemia. Blood 2005; 105: 2640-53. http://dx.doi.org/10.1182/blood-2004-08-3097

Gajria, D, Chandarlaparty S. HER2-amplified breast cancer: mechanisms of trastuzumab and novel targeted therapies. Expert Rev Anticancer Ther 2011; 11: 263-75. http://dx.doi.org/10.1586/era.10.226

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Huamn breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 244: 707-12. http://dx.doi.org/10.1126/science.2470152

Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3t3 cells. Proc Natl Acad Sci USA 1987; 84: 7159-63. http://dx.doi.org/10.1073/pnas.84.20.7159

Vogel CL, Cobleight MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20: 719-26. http://dx.doi.org/10.1200/JCO.20.3.719

Tagliabue E, Campiglio M, Pupa SM, Menard S, Balsari A. Activity and resistance of trastuzumab according to different clinical settings. Cancer Treat Rev 2012; 38: 212-17. http://dx.doi.org/10.1016/j.ctrv.2011.06.002

Wong H, Leung R, Kwong A, Chiu ., Liang R, Swanton C, et al. Integrating molecular mechanisms and clinical evidence in the management of trastuzumab resistant or refractory HER-2+ metastatic breast cancer. Oncologist 2011; 16: 1535-46. http://dx.doi.org/10.1634/theoncologist.2011-0165

Bedard PL, Cardoso F, Piccart-Gebhart MJ. Stemming resistance to HER-2 targeted therapy. J Mammary Gland Biol Neoplasia 2009; 14: 55-66. http://dx.doi.org/10.1007/s10911-009-9116-x

Oliveras-Ferraros C, Vazquez-Martin A, Martin-Castillo B, Cufi S, Del Barco S, Lopez-Bonet E, et al. Dynamic emergence of the mesenchymal CD44(pos)CD24(neg/low) phenotype in HER2-gene amplified breast cancer cells with de novo resistance to trastuzumab (Herceptin). Biochem Biophys Res Commun 2010; 397: 27-33. http://dx.doi.org/10.1016/j.bbrc.2010.05.041

Cufi S, Corominas-Faja B, Vazquez-Martin A, Oliveras-Ferraros C, Dorca J, Bosch-Barrera J, et al. Metformin-induced preferential killing of breast cancer initiating CD44+CD24-/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Oncotarget 2012 3: 395-8.

Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004; 6: 117-27. http://dx.doi.org/10.1016/j.ccr.2004.06.022

Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007; 12: 395-402. http://dx.doi.org/10.1016/j.ccr.2007.08.030

Fabi A, Metro G, Di Benedetto A, Nistico C, Vici P, Melucci E, et al. Clinical significance of PTEN and p-Akt co-expression in HER2-positive metastatic breast cancer patients treated with trastuzumab-based therapies. Oncology 2010; 78: 141-9. http://dx.doi.org/10.1159/000312656

Kataoka Y, Mukohara T, Shimada H, Saijto N, Hirai M, Minami H. Association between gain-of-function mutations in PI3KCA and resistance to HER2-targeted agents in HER2-aplified breast cancer cell lines. Ann Oncol 2010; 21: 255-62. http://dx.doi.org/10.1093/annonc/mdp304

Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness GC, Wong H, et al. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth facor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol 2011; 29: 166-73. http://dx.doi.org/10.1200/JCO.2009.27.7814

Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 2008; 7: 3129-40. http://dx.doi.org/10.1158/1535-7163.MCT-08-0013

Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell SP, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996; 87: 1089-96.

Parmar A, Marz S, Rushton S, Holzwarth C, Lind K, Kayser S, et al. Stromal niche cells protect early leukemic FLT3-ITD+ progenitor cells against first-generation FLT3 tyrosine kinase inhibitors. Cancer Res 2011; 71: 4696-706. http://dx.doi.org/10.1158/0008-5472.CAN-10-4136

Sell S. On the stem cell origin of cancer. Am J Pathol 2010; 176: 2584-94. http://dx.doi.org/10.2353/ajpath.2010.091064

Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 2009; 8: 806-23. http://dx.doi.org/10.1038/nrd2137

McDermott SP, Wicha MS. Targeting breast cancer stem cells. Mol Oncol 2010; 4: 404-19. http://dx.doi.org/10.1016/j.molonc.2010.06.005

Prud´homme GJ. Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des 2012; 18: 2838-49.

Nguyen NP, Almeida FS, Chin A, Nguyen LM, Cohen D, et al. Molecular biology of breast cancer stem cells: potential clinical application. Cancer Treat Rev 2010; 36: 485-91. http://dx.doi.org/10.1016/j.ctrv.2010.02.016

Lorico A, Rappa G. Phenotypic heterogeneity of breast cancer stem cells. J Oncol 2011; 2011: 135039.

Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012; 10: 717-28. http://dx.doi.org/10.1016/j.stem.2012.05.007

Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 2009; 138: 822-9. http://dx.doi.org/10.1016/j.cell.2009.08.017

Mueller MT, Hermann PC, Witthauer J, Rubio-Vigueira B, Leicht SF, Huber S, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 2009; 137: 1102-13. http://dx.doi.org/10.1053/j.gastro.2009.05.053

Park CY, Tseng D, Weissman IL. Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol Ther 2009; 17: 219-30. http://dx.doi.org/10.1038/mt.2008.254

Liu S, Wicha MS. Targeting breast cancer stem cells. J Clin Oncol 2010; 28: 4006-12. http://dx.doi.org/10.1200/JCO.2009.27.5388

Epelbaum R, Schaffer M, Vizel B, Badmaev V, Bar-Sela G. Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr Cancer 2010; 62: 1137-41. http://dx.doi.org/10.1080/01635581.2010.513802

Bayet-Robert M, Kwiatkowski F, Leheurteur M, Gachon F, Planchat E, Abrial C, et al. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther 2010; 9: 8-14. http://dx.doi.org/10.4161/cbt.9.1.10392

Martin-Castillo B, Dorca J, Vazquez-Martin A, Oliveras-Ferraros C, Lopez-Bonet E, Garcia M, et al. Incorporating the antidiabetic drug metformin in HER2-positive breast cancer treated with neo-adjuvant chemotherapy and trastuzumab: an ongoing clinical-translational research experience at the Catalan Institute of Oncology. Ann Oncol. 2010; 21: 187-9. http://dx.doi.org/10.1093/annonc/mdp494

Kanai M, Yoshimura K, Asada M, Imaizumi A, Suzuki C, Matsumoto S, et al. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 2011; 68: 157-64. http://dx.doi.org/10.1007/s00280-010-1470-2

Rocha GZ, Dias MM, Ropelle ER, Osorio-Costa F, Rossato FA, Vercesi AE, et al. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 2011; 17: 3993-4005. http://dx.doi.org/10.1158/1078-0432.CCR-10-2243

MacKenzie MJ, Ernst S, Johnson C, Winquist E. A phase I study of temsirolimus and metformin in advanced solid tumours. Invest New Drugs 2012; 30: 647-52. http://dx.doi.org/10.1007/s10637-010-9570-8

Zhang GN, Liang Y, Zhou LJ, Chen SP, Chen G, Zhang TP, et al. Combination of salinomycin and gemcitabine eliminates pancreatic cancer cells. Cancer Lett 2011; 313: 137-44. http://dx.doi.org/10.1016/j.canlet.2011.05.030

Zhang Y, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 2012; 33: 679-91. http://dx.doi.org/10.1016/j.biomaterials.2011.09.072

Winquist RJ, Boucher DM, Wood M, Furey BF. Targeting cancer stem cells for more effective therapies: taking out cancer´s locomotive engine. Biochem Pharmacol 2009; 78: 326-34. http://dx.doi.org/10.1016/j.bcp.2009.03.020

Kawasaki BT, Hurt EM, Mistree T, Farrar WL. Targeting cancer stem cells with phytochemicals. Mol Interv 2008; 8: 174-84. http://dx.doi.org/10.1124/mi.8.4.9

Naujokat C, Fuchs D, Opelz G. Salinomycin in cancer: a new mission for an old agent. Mol Med Report 2010; 3: 555-9. http://dx.doi.org/10.3892/mmr_00000296

Naujokat C, Laufer S. 2012. Salinomycin, a candidate drug for the elimination of cancer stem cells. In: Dittmar T, Mihich E, Zänker KS, editors. Role of cancer stem cells in cancer biology and therapy. 1st ed. New Hampshire: Science Publishers 2013: in press.

Li Y, Wicha MS, Schwartz SJ, Sun D. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 2011; 22: 799-806. http://dx.doi.org/10.1016/j.jnutbio.2010.11.001

Burnett J, Newman B, Sun D. Targeting cancer stem cells with natural products. Curr Drug Targets 2012; 13: 1054-64. http://dx.doi.org/10.2174/138945012802009062

Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, et al. CXCR1 blockade selctively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010; 120: 485-97. http://dx.doi.org/10.1172/JCI39397

Low JA, de Sauvage FJ. Clinical experience with Hedgehog pathwy inhibitors. J Clin Oncol 2010; 28: 5321-6. http://dx.doi.org/10.1200/JCO.2010.27.9943

Downloads

Published

2013-01-14

How to Cite

Cord Naujokata, & Stefan Laufer. (2013). Targeting Cancer Stem Cells with Defined Compounds and Drugs . Journal of Cancer Research Updates, 2(1),  36–67. https://doi.org/10.6000/1929-2279.2013.02.01.7

Issue

Section

Articles