TAT-Mediated Delivery of p27 in Tumor Cell Lines as a Potential Therapeutic Peptide


  • Ana-Matea Mikecin Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb, Croatia
  • Mira Grdisa Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb, Croatia




Apoptosis, cell cycle, p27, TAT fusion proteins.


 TAT-fusion proteins (TAT-wt-p27, TAT-pt-p27, TAT-N'-p27) were introduced into the cells by protein transduction method. The mechanism by which transduced 27 influences on the regulation of cell cycle and apoptosis, were explored.

TAT-p27-fusion proteins affected the proliferation of examined cell lines depending on type of the cells and protein. Transduced p27 induced accumulation of cyclin D1 and D3, with slight differences among the form of protein. Expression of cyclin D2 and E was mainly unchanged. Furthermore, TAT fusion proteins promoted apoptosis, which resulted in activation of caspase 3, appearance of poly (ADP-ribose) polymerase and DNA fragments, as well as the activation of apoptosis-inducing factor.

The results pointed that transduced p27 activates apoptosis through activation of different signal transduction pathways. Thus, the molecule of p27 could be appropriate for treatment of tumors with deregulated its function. Also, the protein transduction method could find the application in specifically targeted cancer therapy.


Hengst L, Reed SI. Translational control of p27Kip1 accumulation during the cell cycle. Science 1996; 271: 1861-4. http://dx.doi.org/10.1126/science.271.5257.1861

Sheer CJ. Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501-12. http://dx.doi.org/10.1101/gad.13.12.1501

Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in the cell cycle progression. Cell Cycle 2003; 2: 339-45. http://dx.doi.org/10.4161/cc.2.4.433

Besson A, Assoian RK, Roberts JM. Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nature Rev Cancer 2004; 4: 948-55. http://dx.doi.org/10.1038/nrc1501

Slingerland J; Pagano M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 2000; 183: 10-7. http://dx.doi.org/10.1002/(SICI)1097-4652(200004)183:1<10::AID-JCP2>3.0.CO;2-I

Nakayama KI, Hatakeyama S, Nakayama K. Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun 2001; 282: 853-60. http://dx.doi.org/10.1006/bbrc.2001.4627

Baldassarre G, Belletti B, Bruni P, Boccia A, Trapasso F, Pentimalli F, et al. Overexpressed cyclin D3 contributes to retaining the growth inhibitor in the cytoplasm of tyroid tumor cells. J Clin Invest 1999; 104: 856-74. http://dx.doi.org/10.1172/JCI6443

Ciaprrone M, Yamamoto H, Yao Y, Sgambato A, Cattorett E, Tomita N, et al. Localization and expression of p27 Kip1 in multistage colorectal carcinogenesis. Cancer Res 1998; 58: 114-22.

Hurteu JA, Allison BM, Brutkewicz SA, Boebl MG, Heilman DK, Bigsby RM, et al. Expression and subcellular localization of the cyclin-dependent kinase inhibitor p27(Kip1) in epithelial ovarian cancer. Gynecol Oncol 2001; 83: 292-98. http://dx.doi.org/10.1006/gyno.2001.6376

Pruitt K, Der CJ. Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett 2001; 171: 1-10. http://dx.doi.org/10.1016/S0304-3835(01)00528-6

Fisher U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 2003; 10: 76-100. http://dx.doi.org/10.1038/sj.cdd.4401160

Cregan SP, Dawson LV, Slack SR. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 2004; 23: 2785-96. http://dx.doi.org/10.1038/sj.onc.1207517

Reeve JL, Duffy AM, O'Brien T, Samali A. Don't lose heart-therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J Cell Mol Med 2005; 9: 609-22. http://dx.doi.org/10.1111/j.1582-4934.2005.tb00492.x

Samali A, Zhivotovsky B, Jones D, Nagata S, Orrenuis S. Apoptosis: cell death defined by caspase activation. Cell Death Differ 1999; 6: 495-96. http://dx.doi.org/10.1038/sj.cdd.4400520

Yu SW, Wang H, Dawson TM, Dawson VL. Poly(ADP-ribose) polymerase-1 and apoptosis factor in neurotoxicity. Neurobil Dis 2003; 14: 303-17. http://dx.doi.org/10.1016/j.nbd.2003.08.008

Klein JA, Long-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Franke WN, et al. The harlequin mouse mutation down-regulates apoptosis-inducing factor. Nature 2005; 419: 367-74. http://dx.doi.org/10.1038/nature01034

Joza N, Susin SA, Daugas E, Stanfore WL, Cho SK, Li CYJ, et al. Essential role of mitochondrial apoptosis-inducing factor in programmed cell death. Nature 2001; 410: 549-54. http://dx.doi.org/10.1038/35069004

Otera H, Ohsakaya S, Nagaura ZI, Ishihara N, Mihara K. Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 2005; 24: 1375–86. http://dx.doi.org/10.1038/sj.emboj.7600614

Loeffler M, Daugas E, Susin SA, Zamzami N, Metivier D, Nieminen AL, et al. Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. FASEB J 2001; 15: 758-67. http://dx.doi.org/10.1096/fj.00-0388com

Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, et al. Transduction of full length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces migration. Nat Med 1998; 4: 1449-52. http://dx.doi.org/10.1038/4042

Schwarze SR, Ho A, Vocero-Akbani A, Dowdy S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999; 285: 1596-72. http://dx.doi.org/10.1126/science.285.5433.1569

Grdisa M. Influence of CD40 ligation on survival and apoptosis of B-CLL cells in vitro. Leuk Res 2003; 1690: 1-6.

Herrmann M; Lorenz HM, Voll R, Grunke M, Woith W, Kalden JR. A rapid and simple method for the isolation of apoptotic DNA fragments. Nuc Acid Res 1994; 22: 5506-07. http://dx.doi.org/10.1093/nar/22.24.5506

Sheer CJ. Principles of tumor suppression. Cell 2004; 116: 235-46. http://dx.doi.org/10.1016/S0092-8674(03)01075-4

Schribe M, Muller WJ, Singh G, Graham FL. Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16INK4A, p18INK4C, p19INK4D, p21WAF1/CIP1 and p27KIP1 in inducing cell arrest, apoptosis and inhibition of tumorogenicity. Oncogene 1999; 18: 1663-76. http://dx.doi.org/10.1038/sj.onc.1202466

Komata T, Kanzawa T, Takeuchi H, Germano IM, Schriber M, Konda Y, et al. Antitumor effect of cyclin-dependent kinase inhibitor p16INK4A, p18INK4C, p19INK4D, p21WAF1/CIP1 and p27KIP1 on malignant glioma cells. Br J Cancer 2003; 88: 1277-80. http://dx.doi.org/10.1038/sj.bjc.6600862

Park KH, Lee J, Yoo CG, Kim YW, Han SK, Shim YS, et al. Application of p27 gene therapy for human malignant glioma potentiated by using mutant p27. J Neurosur 2004; 101: 505-10. http://dx.doi.org/10.3171/jns.2004.101.3.0505

Park KH, Seol JY, Yoo CG, Kim TY, Han SK, Shi, YS, et al. Adenovirus expressing p27kip1 induces growth arrest of lung cancer cell lines and suppress the growth of established lung cancer xenografts. Lung Cancer 2001; 31: 149-55. http://dx.doi.org/10.1016/S0169-5002(00)00195-1

Katner AL, Gootam P, Hoang QB, Gnarra JR, Rayford W. A recombinant adenovirus expressing p27kip1 induces cell cycle arrest and apoptosis in human 786-0 renal carcinoma cells. J Urol 2002; 168: 766-73. http://dx.doi.org/10.1016/S0022-5347(05)64742-8

Supriatno HK, Hoque MO, Bando T, Yoshida H, Sato M. Overexpression of p27kip1 induces growth arrest and apoptosis in an oral cancer cells. Oral Oncol 2002; 38: 730-36. http://dx.doi.org/10.1016/S1368-8375(02)00011-8

Grdisa M, Mikecin AM, Poznic M. Does transduced p27 induce apoptosis in human tumor cell lines. Ann NY Aca. Sci 2006; 1090: 120-9.

Neukamm B, Miyakawa AA, Fukada SY, de Andrade CR, Pacheco FP, de Silva TG, et al. Local TAT-p27Kip1 fusion protein inhibits cell proliferation in rat carotid arteries. Ther Adv Cardiovasc Dis 2008; 2: 129-36. http://dx.doi.org/10.1177/1753944708090170

Nigg EA. Targets of cyclin-dependent protein kinases. Curr Opin Cell Biol 1993; 199: 187-93. http://dx.doi.org/10.1016/0955-0674(93)90101-U

Sa G, Guo Y, Stacey DW. The regulation of S phase initiation by p27 kip1 in NIH3T3 cells. Cell Cycle 2005; 4: 618-27. http://dx.doi.org/10.4161/cc.4.4.1632

Lucibello FC, Sewing A, Brusselbach S, Burger C, Muller R. Deregulation of cyclins D1 and E and suppression of cdk2 and cdk4 in senescent human fibroblasts. J Cell Sci 1993; 105: 123-33.

Zang Q, Tian L, Mansouri A, Korapati LA, Johnson TJ, Claret XF. Inducible expression of a degradation-resistant form of p27Kip1 causes growth arrest and apoptosis in breast cancer cells. FEBS Lett 2005; 579: 3932-40. http://dx.doi.org/10.1016/j.febslet.2005.06.012

Bustany S, Tchakarska G, Sola B. Cyclin D1 regulates p27Kip1 stability in B cells. Cell Sign 2011; 23: 171-9. http://dx.doi.org/10.1016/j.cellsig.2010.09.001

Koepp DM, Schaefer LK, He X, Keyomarsi K, Chu C, Harper JW, et al. Phosphorylation dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 2001; 294: 173-7. http://dx.doi.org/10.1126/science.1065203

Kagawa S, Gu J, Honda T, McDonell JT, Swisher GS, Roth AJ, et al. Deficiency of caspase-3 in MCF7 cells blocks Bax-mediated nuclear fragmentation but not cell death. Clin Cancer Res 2001; 7: 1474-80.

Liang J, Shao HS, Xu XZ, Henessy B, Diang Z, Larrea M, et al. The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nature Cell Biol 2007; l9: 218-24.

Lecoer H. Nuclear apoptosis detection by flow cytometry: influence of endogenous endonucleases. Exp Cell Res 2002; 277: 1-14. http://dx.doi.org/10.1006/excr.2002.5537

Ye H, Cande C, Stephanou NC, Jiang S, Gurbuxani S, Larochette N, et al. DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol 2002; 9: 680-4. http://dx.doi.org/10.1038/nsb836

Susian SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, et al. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 1999; 189: 381-94. http://dx.doi.org/10.1084/jem.189.2.381

Wang X, Gorospe M, Huang Y, Holbrook NJ. P27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene 1997; 15: 2991-7. http://dx.doi.org/10.1038/sj.onc.1201450

Schreiber M, Muller WJ, Singh G, Graham FL. Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16INK4A, p18INK4C, p19INK4D, p21WAF1/CIP1 and p27KIP1 in inducing cell cycle arrest, apoptosis and inhibition of tumorigenicity. Oncogene 1999; 18: 1663-76. http://dx.doi.org/10.1038/sj.onc.1202466

Sasaki T, Katayose Y, Yamamoto K, Mizuma M, Shiraso S, Yabuuchi S, et al. Adenovirus expressing mutant p27kip1 enhanced apoptosis and inhibited the growth of Xenografted human breast cancer. Surg Today 2007; 37: 1073-82. http://dx.doi.org/10.1007/s00595-007-3546-0

Morishita D, Takami M, Yoshikawa S; Katayama R, Sato S, Kukimoto-Niino M, et al. Cell-permeable carboxy-terminal p27Kip1 peptide exhibits ant-tumor activity by inhibiting Pim-1 kinase. J Biol Chem 2011; 286: 2681-8. http://dx.doi.org/10.1074/jbc.M109.092452




How to Cite

Ana-Matea Mikecin, & Mira Grdisa. (2012). TAT-Mediated Delivery of p27 in Tumor Cell Lines as a Potential Therapeutic Peptide . Journal of Cancer Research Updates, 1(1),  78–86. https://doi.org/10.6000/1929-2279.2012.01.01.12