
 Journal of Cancer Research Updates, 2015, 4, 179-187 179 

 
 ISSN: 1929-2260 / E-ISSN: 1929-2279/15  © 2015 Lifescience Global 

The Role of Exosomes and its Cargos in Drug Resistance of 
Cancer 

Yujie Xie and Liwu Fu* 

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; 
Cancer Center, Sun Yat-sen University, Guangzhou 510060, China 

Abstract: Chemotherapy is one of the main therapies in cancer and plays an important role in controlling tumor 
progression, which can offer a longer overall survival (OS) for patients. But as the accumulation of drugs used in vivo, 

cancer cells develop drug resistance, even multi-drug resistance (MDR), that can cause failure of the whole therapy. The 
similar phenomenon can be observed in vitro. There are several mechanisms of drug resistance such as drug efflux, 
mediated by extracellular vesicles. Exosomes, a subset of extracellular vesicles (EVs), can be secreted by many types of 

cells and transfer proteins, lipids, and miRNA/mRNA/DNAs between cells in vitro and in vivo. Particularly cancer cells 
secrete more exosomes than healthy cells and resistance cells secrete more exosomes than sensitive cells. Exosomes 
have function of intercellular communication and molecular transfer, both associated with tumor growth, invasion, 

metastasis, angiogenesis, and drug resistance. In this paper, we will review the current knowledge regarding the 
emerging roles of exosomes and its cargo in drug resistance.  
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INTRODUCTION 

Chemotherapy is the major treatment used in 

cancer management. Development of resistance to 

drugs in cancer remains a major obstacle to the 

success of chemotherapy [1]. More than 90% of 

patients with metastatic disease relapse and become 

unresponsive to treatment due to the development of 

drug resistance [2, 3]. There are different mechanisms 

of developing drug resistance such as drug efflux 

mediated by exosome and intercellular communication. 

Here in this paper, we mainly focus on the relationship 

between tumor-derived exosomes (TD-exosomes) and 

drug resistance in cancer. There are multiple reasons 

for drug resistance, including mediating drug efflux of 

tumor cells [4], the inhibition of tumor suppressor 

proteins by miRNAs [5], the presence of a subset of 

cancer stem-like cells with high drug-resistance [6], and 

the reduction in interaction between anti-cancer drugs 

and cancer cells [7]. Exosomes may play a role in the 

above pathways of developing drug resistance.  

THE STRUCTURE AND FUNCTIONS OF 
EXOSOMES 

Exosomes were first discovered in sheep in 1983 as 

transferrin associated 50 nm vesicles extruding from 

reticulocytes and then were found to be secreted by a 

wide range of mammalian cell types [8]. Thirty years 

past, considerable amount of researches haves done in  
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order to understand the exosomes. Exosomes are a 

kind of extracellular vesicles secreted from the original 

cell. Exosomes are 50-100 nm in diameter and 1.13-

1.19 g/mL in density, with a classic “cup” or “dish” 

morphology. Exosomes can be released by the fusion 

of multivesicular bodies (MVBs) to the plasma 

membrane, or can be formed by the breakage of 

endosome-like bodies from the membrane [9]. 

Exosomes consist of a lipid bilayer membrane, which 

matches the characteristics of the original cell, 

surrounding a small cytosol. The structured lipids are 

involved in cell communication by regulating cell 

signaling pathways away from the origin. The lipid 

structures of exosomes can carry various important 

proteins and nucleic acids, and guide cell signaling 

pathways between the normal and disease states.  

It is clear that exosomes are an important way for 

intercellular communication [10]. It has been revealed 

various new information of material transport across 

biological membranes. To a great extent, the role of 

exosomes in disease development has been 

confirmed, especially in cancer [11, 12]. Exosomes 

were initially considered as garbage bags for 

abandoned membrane parcels and molecular 

fragments. In the mid-1990s, exosomes were 

recognized as being closely related to the function of 

the immune system with the finding of the role of 

exosomes in the presentation of B lymphocyte antigens 

[13]. In the 2010s, researchers found that miRNA and 

mRNA can be loaded as “goods” in exosomes. Actually 

many types of protein, breakdown products of signaling 

pathways, viruses [14] and RNAs [15], miRNAs [16] 

can be transported through exosomes. In recent years, 
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another function of exosomes was revealed: they can 

serve as “communication shuttles” and transduction 

signals between cells. Exosomes play important roles 

in many physiological and pathological processes such 

as immune surveillance, inflammation, tumorigenesis, 

and drug resistance.  

Many studies confirm that exosomes can interact 

with recipient cells [17], but it is unclear how the 

exosomes interact with and regulate the function of 

target cells. Based on indirect evidence and studies in 

vitro, several mechanisms of interactions have been 

proposed: (1) binding to the surface of the recipient cell 

through exosomal adhesion molecules; (2) direct fusion 

of vesicles with recipient plasma membrane after 

adhesion; or (3) internalization of vesicles into 

endocytic compartments through receptor-mediated 

endocytosis or phagocytosis. The interaction between 

exosomes and target cells can lead to direct stimulation 

of target cells via surface-expressed growth factors 

(EGF) or bioactive lipids, transfer of membrane 

receptors, or delivery of proteins and nucleic acids to 

target cells. Additionally, the presence of mRNA and 

miRNA, termed “exosomal shuttle RNA,” in exosomes 

suggests that genetic material exchange could be an 

additional level of exosome-mediated intercellular 

communication [18]. The diversity of export cargos by 

exosomes indicates that much to be learned on the 

effects of exosome transport. In the following 

paragraphs, the role of exosomes and its cargos in 

different aspects will be reviewed.  

EXOSOME-MEDIATED DRUG ACCUMULATION 
AND EFFLUX  

Traditionally, exosomes are in charge of waste 

product export and less needed molecules from cells. 

In cancer cell models, exosomes could also export 

chemotherapeutic drugs, which partly play a role in 

cancer cell resistance to chemotherapy. 

As presented, researchers found that anti-cancer 

drugs may be subjected to efflux by exosomes leading 

to reduction of efficacy of cancer treatment [4]. The 

relationships between drug efflux and drug sensitivity in 

different tumor models strongly suggest that forming 

and shedding of exosomes is closely related to drug 

resistance in many tumors [19]. Drugs are accumulated 

in intracellular vesicles which can prevent drugs from 

killing the cancer cells. When shedding intracellular 

vesicles become exosomes secreted into the exterior, 

the intracellular concentration of the drug is also 

reduced, which shows the reduction of chemo-

sensitivity. Based on the theory that exosomes can 

mediate drug efflux, much research has been 

conducted to confirm whether exosomes participate in 

the process of tumor resistance. The doxorubicin 

encapsulated in exosomes was captured using 

fluorescence microscopy, which proved the hypothesis 

that drugs were wrapped and physically excluded by 

exosomes [20]. The resistance of docetaxel is probably 

related to the increased secretion of exosomes, and 

even leads to a change in cell phenotype in prostate 

cancer [20, 21] and breast cancer models [22]. In 

cisplatin-resistant human ovarian cancer cell lines 

compared with cisplatin-sensitive cells, the accumula-

tion of cisplatin in the lysosomal compartment is 

significantly reduced owing to the release of exosomes, 

and even stored cisplatin is rapidly discharged from the 

lysosomes with the help of enhanced cisplatin 

transporter proteins [23]. In addition, after treatment 

with cisplatin, the amount of cisplatin in exosomes 

released from cisplatin-resistant cells is 2.6 times 

higher than from cisplatin-sensitive cells, indicating that 

exosomes can be used as an efflux mechanism for 

anticancer drugs by tumor cells [23]. A similar 

phenomenon was also observed with melanosome 

[24]. The above studies support the viewpoint that the 

exclusion of drugs or their decomposed products by 

exosomes will result in a reduction of drugs in tumors, 

and even guide the drugs to act on nearby non-target 

organs. Exosome-mediated drug efflux is now an 

emerging concept in the area of drug resistance. 

THE EXOSOME-ANTIBODY INTERACTION INHI-
BITED THE ANTI-TUMOR EFFECTS 

As a kind of extracellular vesicles, the membrane of 

exosomes which matches the characteristics of the 

original cell, can express and carry the same antigen 

as the original cell. To an extent exosomes may 

counteract the effect of antibody drugs.  

Exosomes with HER2 Expression Binding to 
Trastuzumab Contribute to Drug Resistance 

Researchers found that Exosomes from HER2-

overexpressed breast cancer cell lines also contain full-

length HER2 molecules and can inhibit the drug effects 

[25]. Exosomes secreted by HER2-overexpressing 

breast carcinoma cell lines were analyzed in vitro and 

in vivo their potential role in interfering with the 

therapeutic activity of the humanized antibody 

Trastuzumab. The result showed that exosomes 

released by the HER2-overexpressing tumor cell lines 

express a full-length HER2 molecule that is also 
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activated, although to a lesser extent than in the 

original cells. Release of these exosomes was 

significantly modulated by the EGF and heregulin, two 

of the known HER2 receptor-activating ligands and 

naturally present in the surrounding tumor 

microenvironment. Exosomes secreted either in HER2-

positive tumor cell-conditioned supernatants or in 

breast cancer patients’ serum bound to Trastuzumab. 

Functional assays revealed that both xenogeneic and 

autologous HER2-positive exosomes inhibited the anti-

proliferative effects of trastuzumab by preventing it 

from binding to tumor cells. These findings point to the 

role of HER2-positive exosomes in modulating 

sensitivity to Trastuzumab [25]. 

Specific Exosomes Binding to CD20 and other 
Immune Factors  

Another research showed that Lymphoma 

exosomes carry CD20, which bind therapeutic anti-

CD20 antibodies and protect target cells from antibody 

attack [26]. Moreover, antibodies detained in exosomes 

can reduce the antibody-dependent cellular cytotoxicity 

against tumor cells by immune effector cells. The cell-

released exosomes contain abundant complement 

proteins and complement membrane attack complex 

(MAC) and can be used as a preventive mechanism to 

prevent membrane lysis via the complement system 

[27]. The exosome-secreted membrane attachment 

type TNF-  can prevent cell death induced by cytotoxic 

T cells [28]. 

THE ROLE OF EXOSOME-DERIVED NUCLEIC 
ACIDS IN DRUG RESISTANCE 

Exosome-Derived microRNAs Regulate Drug 
Sensitivity 

MicroRNAs (miRNA) are small noncoding RNAs 

that are usually 20–25 nucleotide long sequences with 

diverse functions [29, 30]. They can regulate many 

genes by binding to non-coding regions of target 

mRNA, causing disorders in the target genes [29]. 

They are recognized as an important mechanism of 

intercellular communication in exosomes [31, 32]. 

MiRNAs have also been shown to be included into 

exosomes and to be capable to regulate the function of 

distant cells entering the blood stream [33, 34] and may 

affect the processes of receptor cells, especially by 

promoting interaction between various cells in the 

tumor microenvironment (TME)[35].  

As more and more studies have revealed the 

significance of exosomal miRNAs in intercellular 

communication [36], miRNA expression patterns 

differed between exosomes of drug-resistant and drug-

sensitive cells. Drug-resistant breast cancer (BCa) cells 

are an abundant source of exosomes [37], researchers 

have begun to explore the relationship between 

exosomal miRNA and drug resistance. The ability of 

drug- resistant BCa cells to transmit resistance 

capacity is probably due to their release of exosomes. 

When exosomes were treated with RNase transfer of 

drug resistance was impaired [38]. This phenomenon 

may reveal that exosomes could alter chemo-

susceptibility in recipient sensitive cells by modulating 

cell cycle distribution and drug-induced apoptosis after 

binding, absorption, and internalization [39, 40]. 

Recently Chen and colleagues reported that exosomes 

from drug resistant BCa cells are capable of delivering 

a subset of miRNAs (miR-100, miR-222 and miR-30a) 

to sensitive cells [40]. MiR-34a, detected as both 

intracellular and exosomal biomarker, was recently 

found also to influence prostate cancer cell response to 

docetaxel by regulating anti-apoptotic BCL-2 gene [41]. 

Another study identifies exosomic miR-21 and miR-155 

triggered drug resistance to chemotherapy through 

dendritic cells in neuroblastoma and identifies 

exosomes within the TME as important molecular 

targets to restore drug sensitivity [42].  

Exosomes can also increase chemoresistance of 

the recipient cancer cells. When cisplatin is added to 

lung cancer cells (A549), exosome secretion is 

strengthened, and the addition of this secreted 

exosomes to other A549 cells can increase the 

resistance of these cells to cisplatin [43]. When A549 is 

exposed to cisplatin, the expression levels of several 

miRNA and mRNA, which are reportedly associated 

with cisplatin sensitivity, change significantly in 

secreted exosomes. This phenomenon implies that the 

changes of potential associated miRNA and mRNA 

may mediate the resistance of A549 cells to cisplatin, 

but the precise underlying mechanisms are still being 

studied. 

LncRNAs Transferring by Extracellular Vesicles 
Modulate Chemosensitivity 

Long non-coding RNAs (lncRNAs) are defined as 

non-coding RNAs more than 200 nucleotides in length 

[44-47]. Like miRNA, these lncRNA can regulate the 

expression of associated genes at transcriptional, post-

transcriptional, and epigenetic levels [48] and have an 

impact on many different cellular processes. Recently, 

Several lncRNA have been implicated in human liver 

diseases. In a hepatocellular cancer (HCC) model, 
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researchers found that lncRNA was enriched in 

exosomes from HCC cells can reduce chemotherapy-

induced cell death in recipient cells by mediating 

TGF -dependent chemoresistance [49]. Amongst the 

lncRNA, the lincRNA-ROR is the most significantly 

upregulated lncRNA in malignant hepatocytes. This 

lncRNA has been recognized to contribute to 

epigenetic regulators involved in pluripotency and 

lineage commitment [50]. LincRNA-VLDLR (linc-

VLDLR) ,another lncRNA found in EVs, was also 

significantly up-regulated in malignant hepatocytes[51]. 

Exposure of HCC cells to diverse anti-cancer agents 

such as sorafenib, camptothecin, and doxorubicin 

increased linc-VLDLR expression in cells as well as 

within EVs released from these cells. RNAi-mediated 

knockdown of linc-VLDLR decreased cell viability and 

abrogated cell cycle progression. Moreover, 

knockdown of VLDLR reduced expression of ABCG2 

(ATP-binding cassette, sub-family G member 2), 

whereas over- expression of this protein reduced the 

effects of VLDLR knockdown on sorafenib-induced cell 

death[51]. Therefore, linc-VLDLR is identified as an 

extracellular vesicle enriched lncRNA that contributes 

to cellular stress responses.  

Exosomes Secreted with mRNA Related to Drug 
Resistance  

Excluded miRNA and lncRNA, exosomes also carry 

nucleic acids in larger size, like mRNA. Inhibitors of 

apoptosis (IAP) are a kind of functional proteins which 

can regulate cell survival and are often deregulated in 

cancers. The high levels of IAP expression in cancer 

cells are associated with disease progression and 

therapy resistance [52, 53]. Exosomes secreted from 

human cancer cell lines contain full-length IAP mRNA 

transcripts and were absorbed by recipient cells. These 

mRNA may be translated into functional proteins in the 

recipient cells and may increase cell resistance to 

anticancer drugs [54, 55]. 

THE ROLE OF EXOSOME-DERIVED PROTEINS IN 
DRUG RESISTANCE 

Exosomes Transferring Drug Resistance by 
Delivering P-gp 

The development of MDR in cancer is clinically 

correlated with the overexpression of the efflux 

transporters P-glycoprotein (P-gp) or Multidrug 

Resistance-Associated Protein 1 (MRP1) in many 

cancers such as lung, breast, neuroblastoma and 

prostate cancer [56]. MDR present in cancer arising 

from epithelium may be associated with high P-gp 

expression [57, 58]. P-gp is the best characterized 

efflux pump mediating MDR. It is a 170 kDa membrane 

protein, member of the ATP-binding cassette (ABC) 

superfamily of transporters [59], which can prevent the 

absorption of drugs[60]. P-gp is encoded by the human 

MDR-1 gene located at chromosome 7, being 

synthesized in the endoplasmic reticulum (ER) as a 

glycosylated intermediate. It contains 1,280 amino 

acids arranged in two halves, each encompassing a 

transmembrane domain (TMD) which spans the 

membrane and two intracellular nucleotide-binding 

domains (NBD)[61]. The glycosyl moietyin the first 

extracellular loop of P-gp appears to have a role in the 

trafficking or stability of P-gp to the cell surface, 

although it does not seem to be essential for drug 

transport [62]. 

Exosomes share the same pattern of P-gp 

expression as their original cells: Exosomes secreted 

from drug-resistant cells expressed high level of P-gp 

while exosomes from sensitive cells expressed low 

level of P-gp. Exosomes can also deliver P-gp from 

drug-resistant cells to sensitive cells [22]. 

Consequently, Exosomes are effective in transferring 

drug resistance from drug-resistant cancer cells to 

sensitive ones. There is a reduction in tumor cell death 

as a result of intracellular drug accumulation deficit [2, 

63, 64]. This delivery may be a mechanism of 

exosome-mediated drug resistance transfer. 

Moreover, the expression and exosomic transfer of 

P-gp regulate by miRNA in some ways. Indeed, 

exosomes from resistant leukemia and BCa cells were 

shown to incorporate and transfer both P-gp protein 

and transcripts, together with miRNAs, to drug-

sensitive recipient cells. This transfer resulted in the 

acquisition of the drug resistant by the recipient cells 

[65-67]. In a recent study, the authors analysed the 

molecular basis for the acquired traits and found miR-

27a and miR-451as enhancers of P-gp expression in 

drug resistant cancer cells [68-71]. Another significantly 

expressed and shed miRs, miR-455-3p, is also 

possibly related to P-gp levels [72]. The results from 

microarray analysis showed that miR-455-3p was less 

expressed in a P-gp overexpressing resistant leukemia 

cell line, when compared with the parental sensitive cell 

line. Moreover, following the transfer of microvesicles, 

another type of vesicles, from the resistant to the 

sensitive cell lines, it was observed that the sensitive 

cells acquired lower miR-455-3p and higher P-gp 

levels. They demonstrated that the transfer of 

transcripts and miRs through microvesicles plays an 

important role in conferring MDR by “turning” recipient 
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cells from low P-gp expressed to P-gp overexpressed 

as the donor cell [72] but the mechanisms involved in 

the regulation of P-gp by this miR are not fully 

understood. 

In addition, it is known that miRs involved in P-gp 

regulation could also be transferred via cell-to-cell 

contact and drive drug resistance. Indeed, miR-21 was 

shed via contact dependent intercellular transfer, 

mediated by a transmembrane channel [73]. 

Exosomes Participated in EMT by Transferring EMT 
Inducers  

Epithelial-mesenchymal transition (EMT) is a 

complex interaction network and is one of the important 

lables of cancer. Cancer cells that underwent EMT are 

usually resistant to multiple anticancer drugs [74]. EMT 

inducers, such as annexin A2, integrin 3, metal matrix 

proteinase, IL-6, TGF  and hepatoma-derived growth 

factor, have been found in some TD-exosomes, 

 

Figure 1: A simplified illustration of how exosomes tranfer its cargos and effect the chemosensitivity. 

TD-exosomes secreted by different donor cells can transfer proteins including P-gp, EMT inducers, bioactive factors of CSCs, 
and nucleic acids, like miRNAs, lncRNAs, mRNAs to recipient cells in order to effect the chemosensitivity of anticancer drugs. 
Anticancer drugs can be accumulated in the intracellular vesicles and excreted to the exterior by exosomes diretly. Exosomes 
carry the same antigen as the original cell and counteract the effect of antibody drugs.
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suggesting that TD-exosomes might play a role in the 

EMT process in cancer cells [75-79]. Among these 

inducers, the WNT signaling pathway is well-studied 

that it can promote gene expression program and can 

favor EMT [80]. Human-derived exosomes contained 

Wnt protein can be transferred to recipient cells and 

activate WNT signaling pathway. Therefore TD-

exosomes may have a close relationship with EMT [81-

83]. Recently exosomes were found to be generated 

from nasopharyngeal carcinoma (NPC) contain latent 

membrane protein1 (LMP1), a principal oncoprotein of 

EBV that can drive oncogenic process and tumor 

progression of NPC [84]. EBV-negative cell lines 

treated with LMP1 exosomes increases migration and 

invasiveness of NPC cell lines, which associated with 

EMT [84]. Despite that the number of studies on this 

topic is limited, it can be concluded preliminarily that 

TD-exosomes are associated with EMT, and such 

association might consequently influence the sensitivity 

of chemotherapy [85]. 

EXOSOMES EXPAND DRUG RESISTANCE BY 
REGULATING CANCER STEM-LIKE CELLS (CSCs) 

Mesenchymal stem cells (MSCs) play an important 

role in chemoresistance. In a recent study, it was found 

that MSC-exosomes significantly induced the 

resistance of gastric cancer cells to 5-fluorouracil both 

in vivo and ex vivo. MSC-exosomes antagonized 5-

fluorouracil-induced apoptosis and enhanced the 

expression of multi-drug resistance associated 

proteins, including MRP and lung resistance protein 

(LRP). MSC-exosomes could induce drug resistance in 

gastric cancer cells by activating CaM-

Ks/Raf/MEK/ERK pathway [86]. Thus, MSC-exosomes 

have profound effects on modifying gastric cancer cells 

in the development of drug resistance. Moreover, 

exosomes secreted by bone marrow mesenchymal 

stem cell induce multiple myeloma cells resistant to 

bortezomib through the activation of several survival 

relevant pathways [87].  

Stromal communication with cancer cells can 

influence treatment response. Stromal cells, which are 

primarily fibroblasts but can also be other cell types, 

can promote survival after genotoxic and targeted 

therapy through the secretion of paracrine factors [25]. 

Many of these interactions between stromal cells and 

tumor cells may support the maintenance of CSCs 

analogously to how normal stem cells depend on a 

niche [88]. It has been reported that tumor and stromal 

exosomes induce signal transducer and activator of 

transcription1 (STAT1) through the retinoic acid-

inducible gene-I, an RNA sensor, in CSCs[89]. Stromal 

and BCa cells utilize paracrine and juxtacrine signaling 

to drive chemotherapy and radiation resistance. Upon 

heterotypic interaction, exosomes are transferred from 

stromal to BCa cells. The paracrine antiviral and 

juxtacrine NOTCH3 pathways converge as STAT1 

facilitates transcriptional responses to NOTCH3 and 

expands therapy-resistant tumor-initiating cells. 

Stromal cells orchestrate an intricate crosstalk with 

BCa cells by utilizing exosomes to instigate antiviral 

signaling. This expands BCa adept at resisting therapy 

and promoting tumor growth [89]. Therefore, exosomes 

secreted by both CSCs and stromal cells can 

contribute to tumor drug resistance by regulating the 

bioactive factors of CSCs. 

SUMMARY  

In conclusion, Exosomes contribute to 

chemoresistance to cancer cells in multiple ways. 

Anticancer drugs can be excreted to the exterior by 

exosomes and the exosomes can drive overexpression 

of P-gp which can prevent the absorption of drugs. 

More and more kinds of miRNA, lncRNA, mRNA and 

chemoresistance-related proteins are found in 

exosomes secreted by cancer cells. Exosomes 

secreted by CSCs and stromal cells can expand drug 

resistance by regulating CSCs. There may be other 

ways that exosomes work on drug resistance still not 

be found out. It is clear that exosome is an obstacle to 

the success of chemotherapy. More researches are 

needed to focus on how exosome developing drug 

resistance and how to reverse this type of drug 

resistance in order to expand the drug effects and 

extend the OS of cancer patient ultimately 
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