Antisense Molecular Therapy in Cerebral Gliomas

Authors

  • Maria Caffo Neurosurgical Clinic, Department of Neurosciences, Neurosurgical Clinic, University of Messina School of Medicine, Messina, Italy
  • Maria Angela Pino Neurosurgical Clinic, Department of Neurosciences, Neurosurgical Clinic, University of Messina School of Medicine, Messina, Italy
  • Gerardo Caruso Neurosurgical Clinic, Department of Neurosciences, Neurosurgical Clinic, University of Messina School of Medicine, Messina, Italy
  • Francesco Tomasello Neurosurgical Clinic, Department of Neurosciences, Neurosurgical Clinic, University of Messina School of Medicine, Messina, Italy

DOI:

https://doi.org/10.6000/1927-7229.2012.01.02.1

Keywords:

Angiogenesis, antisense, Gliomas, oligonucleotides, targeted therapy

Abstract

 Despite innovative therapeutic strategies, the expectative of life in patients affected by cerebral gliomas remain dismal. Malignant gliomas represent a class of infiltrative and aggressive neoplasms that are generally resistant to multimodal approach. The efficacy of classical anti-cancer strategies is seriously limited by lack of specific therapies against malignant cells.Glial tumors seem to be able to create a favorable environment for the invasion of glioma cells in cerebral parenchyma when they combine with the extracellular matrix via cell surface receptors. Recent advances in molecular and tumor biology have lead to a new class of modern antitumoral agents. Antisense oligonucleotides are synthetic stretches of DNA which hybridize with specific mRNA strands. The specificity of hybridization makes antisense method an interesting strategy to selectively modulate the expression of genes involved in tumorigenesis. In this review, molecular targets, clinical and experimental studies about the use of antisense oligonucleotides in cerebral gliomas treatment are reported.

References

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97-109. http://dx.doi.org/10.1007/s00401-007-0243-4

Caruso G, Caffo M, Raudino G, Alafaci C, Salpietro FM, Tomasello F. Antisense oligonucleotides as an innovative therapeutic strategy in the treatment of high-grade gliomas. Recent Pat CNS Drug Discov 2010; 5: 53-69. http://dx.doi.org/10.2174/157488910789753503

Tamm I. Antisense therapy in malignant disease: status quo and quo vadis? Clin Sci 2006; 110: 427-42. http://dx.doi.org/10.1042/CS20050284

Wacheck V, Zangemeister-Wittke, U. Antisense molecules for targeted cancer therapy. Oncol Hematol 2006; 59: 65-73.

MacRae IJ, Zhou K, Li, F, Repic A, Brooks AN, Cande WZ, et al. Structural basis for double-stranded RNA processing by Dicer. Science 2006; 311: 195-8. http://dx.doi.org/10.1126/science.1121638

Passioura T, Symonds G. Cancer gene suppression strategies: issues and potential. Curr Issues Mol Biol 2004; 6: 89-101.

Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 2003; 270: 1628-44. http://dx.doi.org/10.1046/j.1432-1033.2003.03555.x

Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 2007; 59: 75-86. http://dx.doi.org/10.1016/j.addr.2007.03.005

Caruso G, Caffo M, Alafaci C, Raudino G, Cafarella D, Lucerna S, et al. Could nanoparticles systems have a role in the treatment of cerebral gliomas? Nanomedicine 2011; 7: 744-52. http://dx.doi.org/10.1016/j.nano.2011.02.008

Moghimi SM. Recent developments in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Anticancer Agents Med Chem 2006; 6: 553-61. http://dx.doi.org/10.2174/187152006778699130

Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001; 53: 283-18.

Caruso G, Caffo M, Raudino G, Tomasello C, Alafaci C, Tomasello F. Nanomedicine and brain tumors treatment. In. Souto EB, editor. Patenting Nanomedicines, Legal Aspects, Intellectual Property and Grant Opportunities. 1st ed. Berlin Heidelberg: Springer-Verlag 2012; pp. 167-204.

Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005; 65: 6910-8. http://dx.doi.org/10.1158/0008-5472.CAN-05-0530

Zhang C, Tang N, Liu X, Liang W, Xu W, Torchilin VP. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release 2006; 112: 229-39. http://dx.doi.org/10.1016/j.jconrel.2006.01.022

Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 2008; 26: 561-9. http://dx.doi.org/10.1038/nbt1402

Liu L, Zern M, Lizarzaburu M, Nantz MH, Wu J. Poly(cationic lipid)-mediated in vivo gene delivery to mouse liver. Gene Ther 2003; 10: 180-7. http://dx.doi.org/10.1038/sj.gt.3301861

Guo S, Huang Y, Zhang W, Wang W, Wei T, Lin D, et al. Ternary complexes of amphiphilic polycaprolactone-graft-poly(N,N-dimethylaminoethylmethacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. Biomaterials 2011; 32: 4283-92. http://dx.doi.org/10.1016/j.biomaterials.2011.02.034

Levin AA. A review of issue in the pharmacokinetics and toxicology of phosphorothioate antisense olionucleotides. Biochim Biophys Acta 1999; 1489: 69-84. http://dx.doi.org/10.1016/S0167-4781(99)00140-2

Lee Y, Scheck AC, Cloughesy TF, Lai A, Dong J, Faroogi HK, et al. Gene expression analysis of glioblastomas identifies the major molecular basis for the prognostic benefit of younger age. BMC Med Genomics 2008; 1: 52. http://dx.doi.org/10.1186/1755-8794-1-52

Morales-Ruiz M, Fulton D, Sowa G, Lanquino LR, Fujio Y, Walsh K, et al. Vascular endothelial growth factor stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase Akt. Circ Res 2000; 86: 892-6. http://dx.doi.org/10.1161/01.RES.86.8.892

Wong ML, Prawira A, Kaye AH, Hovens CM. Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci 2009; 16: 1119-30. http://dx.doi.org/10.1016/j.jocn.2009.02.009

Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor, TT. Angiogenesis in brain tumours. Nat Rev Neurosci 2007; 8: 610-22. http://dx.doi.org/10.1038/nrn2175

Lin ZX, Yang LJ, Huang Q, Lin JH, Ren J, Chen ZB, et al. Inhibition of tumor-induced edema by antisense VEGF is mediated by suppressive vesiculo-vacuolar organelles (VVO) formation. J Cancer Sci 2008; 99: 2540-6. http://dx.doi.org/10.1111/j.1349-7006.2008.00974.x

Yang L, Lin Z, Huang Q, Lin JH, Chen Z, Zhou L, et al. Effect of vascular endothelial growth factor on remodeling of C6 glioma tissue in vivo. J Neurooncol 2011; 103: 33-41. http://dx.doi.org/10.1007/s11060-010-0356-9

Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, et al. ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 2007; 117: 2051-8. http://dx.doi.org/10.1172/JCI32278

Kang C, Yuan X, Li F, Pu P, Yu S, Shen C, et al. Evaluation of folate-PAMAM for the delivery of antisense oligonucleotides to rat C6 glioma cells in vitro and in vivo. J Biomed Mater Res 2010; 93: 585-94.

Tian XX, Zhang YG, Du J, Fang WG, Ng HK, Zheng J. Effects of cotransfection of antisense-EGFR and wild-type PTEN cDNA on human glioblastoma cells. Neuropathology 2006; 26: 178-87. http://dx.doi.org/10.1111/j.1440-1789.2006.00679.x

Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Rainer Wirtz C. Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumors. Cancer Treat Rev 2006; 32: 74-89. http://dx.doi.org/10.1016/j.ctrv.2006.01.003

Pu P, Kang C, Li J, Jiang H, Cheng J. The effects of antisense AKT2 RNA on the inhibition of malignant glioma cell growth in vitro and in vivo. J Neurooncol 2006, 76: 1-11. http://dx.doi.org/10.1007/s11060-005-3029-3

Baltuch GH, Dooley NP, Rostworowski KM. Protein kinase C isoform alpha overexpression in C6 glioma cells and its role in cell proliferation. J Neuroonc 1995; 24: 241-50. http://dx.doi.org/10.1007/BF01052840

Pollack IF, Kawecki S, Lazo JS. Blocking of glioma proliferation in vitro and in vivo and potentiating the effects of BCNU and cisplatin: UCN-01, a selective protein kinase C inhibitor. J Neurosurg 1996; 84: 1024-32. http://dx.doi.org/10.3171/jns.1996.84.6.1024

Grossman SA, Alavi JB, Supko JG, Carson KA, Priet R, Dorr FA, et al. Efficacy and toxicity of the antisense oligonucleotide aprinocarsen directed against protein kinase C-α delivered as a 21-day continuous intravenous infusion in patients with recurrent high-grade astrocytomas. Neuro Oncol 2004; 6: 32-40.

Monia BP, Sasmor H, Johnston J, Freier SM, Lesnik EA, Muller M, et al. Sequence-specific antitumor activity of a phosphorothioate oligodeoxyribonucleotide targeted to human C-raf kinase supports an antisense mechanism of action in vivo. Proc Natl Acad Sci USA 1996; 93: 15481-4. http://dx.doi.org/10.1073/pnas.93.26.15481

Resnicoff M, Sell C, Rubini M, Coppola D, Ambrose D, Baserga R, et al. Rat glioblastoma cells expressing an antisense RNA to the insuline-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors. Cancer Res 1994; 54: 2218-22.

Andrews DW, Resnicoff M, Flanders AE, Kenyon L, Curtis M, Merli G, et al. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insuline-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol 2001; 19: 2189-200.

Liu TJ, LaFortune T, Honda T, Ohmori O, Hatakeyama S, Meyer T, et al. Inhibition of both adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo. Mol Cancer Ther 2007; 6: 1357-67. http://dx.doi.org/10.1158/1535-7163.MCT-06-0476

Wu ZM, Yuan XH, Jiang PC, Li ZQ, Wu T. Antisense oligonucleodes targeting the focal adhesion kinase inhibit proliferation, induce apoptosis and cooperate with cytotoxic drugs in human glioma cells. J Neurooncol 2006; 77: 117-23. http://dx.doi.org/10.1007/s11060-005-9025-9

Platten M, Wick W, Weller M. Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis and immune escape. Microsc Res Tech 2001; 52: 401-10. http://dx.doi.org/10.1002/1097-0029(20010215)52:4<401::AID-JEMT1025>3.0.CO;2-C

Jachimczak P, Bogdahn U, Schneider J, Behl C, Meixensberger J, Apfel R, et al. The effect of transforming growth factor-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 1993; 78: 944-51. http://dx.doi.org/10.3171/jns.1993.78.6.0944

Jachimczak P, Hessdorfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen KH, et al. Transforming growth factor-beta-mediated autocrine growth regulation of gliomas with phosphorothioate antisense oligonucleotides. Int J Cancer 1996; 65: 332-7. http://dx.doi.org/10.1002/(SICI)1097-0215(19960126)65:3<332::AID-IJC10>3.0.CO;2-C

Nickl-Jockschat T, Arslan F, Doerfelt A, Bogdahn U, Bosserhoff A, Hau P. An imbalance between Smad and MAPK pathways is responsible for TGF-beta tumor promoting effects in high-grade gliomas. Int J Oncol 2007; 30: 499-507.

Schlingensiepen R, Goldbrunner M, Szyrach MN, Stauder G, Jachimczak P, Bogdahn U, et al. Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorotioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 2005; 15: 94-104. http://dx.doi.org/10.1089/oli.2005.15.94

Schlingensiepen KH, Schlingensiepen R, Steinbrecher A, Hau P, Bogdahn U, Fischer-Blass B, et al. Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev 2006; 17: 129-39. http://dx.doi.org/10.1016/j.cytogfr.2005.09.002

Hau P, Jachimczak P, Schlingensiepen R, Schulmeyer F, Jauch T, Steinbrecher A, et al. Inhibition of TGF-beta 2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 2007; 17: 201-12. http://dx.doi.org/10.1089/oli.2006.0053

Schneider T, Becker A, Ringe K, Reinhold A, Firsching R, Sabel BA. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 2008; 195: 21-7. http://dx.doi.org/10.1016/j.jneuroim.2007.12.005

Schmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, Rosen EM, et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 1999; 84: 10-8. http://dx.doi.org/10.1002/(SICI)1097-0215(19990219)84:1<10::AID-IJC3>3.0.CO;2-L

Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997; 277: 242-5. http://dx.doi.org/10.1126/science.277.5323.242

Sun J, Wang DA, Jain RK, Carie A, Paquette S, Ennis E, et al. Inhibiting angiogenesis and tumorigenesis by a synthetic molecule that blocks binding of both VEGF and PDGF to their receptors. Oncogene 2005; 24: 4701-9. http://dx.doi.org/10.1038/sj.onc.1208391

Behl C, Winkler J, Bogdahn U, Meixensberger J, Schlingensiepen KH, Brysch W. Autocrine growth regulation in neuroectodermal tumors as detected with oligodeoxynucleotideantisense molecules. Neurosurgery 1993; 33: 679-84. http://dx.doi.org/10.1227/00006123-199310000-00018

Morrison RS, Giordano S, Yamaguchi F, Hendrickson S, Berger MS, Palczewzki K. Basic fibroblast growth factor expression is required for clonogenic growth of human glioma cells. J Neurosci Res 1993; 34: 502-9. http://dx.doi.org/10.1002/jnr.490340503

Khazenzon NM, Ljubimova AV, Lakhter AJ, Fujita M, Fujiwara H, Sekiguchi K, et al. Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro. Mol Cancer Ther 2003; 2: 985-94.

Fujita M, Khazenzon NM, Ljubimova AV, Lee BS, Virtanen I, Holler E, et al. Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis 2006; 9: 183-91. http://dx.doi.org/10.1007/s10456-006-9046-9

Nagato S, Nakagawa K, Harada H, Kohno S, Fujiwara H, Sekiguchi K, et al: Downregulation of laminin alpha4 chain expression inhibits glioma invasion in vitro and in vivo. Int J Cancer 2005; 117: 41-50. http://dx.doi.org/10.1002/ijc.21102

Kondraganti S, Mohanam S, Chintala SK, Kin Y, Nirmala C, Lakka SS, et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisensegene transfer impairs glioblastoma cell invasion. Cancer Res 2000; 60: 6851-5.

Caruso G, Caffo M, Raudino G, Alafaci C, Tomasello F. New therapeutic strategies in gliomas treatment. In: Abujamra AL editor. Brain tumors - current and emerging therapeutic strategies. 1st ed. Rijeka: Intech 2011; p. 281-306. http://dx.doi.org/10.5772/19820

Raudino G, Caffo M, Caruso G, Alafaci C, Tomasello F. Nanoparticle-based cerebral drug delivery systems and antiangiogenic approach in gliomas treatment. Recent Pat Nanotech 2011; 5: 239-44. http://dx.doi.org/10.2174/1872210511105030239

Venza M, Visalli M, Alafaci C, Caffo M, Caruso G, Salpietro FM, et al. Interleukin-8 overexpression in astrocytomas is induced by prostaglandin E2 and is associated with the transcription factors CCAAT/enhancer-binding protein-b and CCAAT/enhancer-binding homologous protein. Neurosurgery 2011; 69: 713-21. http://dx.doi.org/10.1227/NEU.0b013e31821954c6

Downloads

Published

2012-07-15

How to Cite

Maria Caffo, Maria Angela Pino, Gerardo Caruso, & Francesco Tomasello. (2012). Antisense Molecular Therapy in Cerebral Gliomas . Journal of Analytical Oncology, 1(2),  135–144. https://doi.org/10.6000/1927-7229.2012.01.02.1

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.