A Review of the Expression of Genes Involved in Sex Steroid Hormone Metabolism in Prostate Tissue: A Need for Epigenetic Information


  • Jamie Ritchey University of South Carolina, Department of Epidemiology and Biostatistics, 800 Sumter Street, Columbia, SC, 29208
  • Wilfried Karmaus University of South Carolina, Department of Epidemiology and Biostatistics, 800 Sumter Street, Columbia, SC, 29208
  • Tara Sabo-Attwood University of Florida, Department of Environmental and Global Health, P.O. Box 100188, HPNP Building, Room 2150, Gainesville, FL 32610, USA
  • Susan E. Steck University of South Carolina, Department of Epidemiology and Biostatistics, 800 Sumter Street, Columbia, SC, 29208
  • Hongmei Zhang University of South Carolina, Department of Epidemiology and Biostatistics, 800 Sumter Street, Columbia, SC, 29208




Prostate tissue, cancer, sex steroid hormones, methylation, GSTP1


 There is strong clinical and laboratory evidence indicating that sex steroid hormones are important to the development and progression of prostate cancer, yet results from epidemiologic research conflicts. Examining gene expression in the sex steroid hormone pathway may uncover differences between cancerous and non-cancerous prostate tissues, yet our review using a pathway-oriented approach indicates that there is limited consistency across results, with the exception of GSTP1 found in the estrogen pathway, which was under-expressed in cancerous prostate tissue. This agrees with past studies that reported GSTP1 is methylated in prostate cancer. With new cost-effective technology, we can screen for epigenetic markers, like methylation, which can be applied in epidemiological studies. A clearer understanding of gene expression and epigenetic mechanisms in prostate cancer may contribute to improving prevention, diagnosis, and treatment.


American Cancer Society. Cancer Facts & Figures 2008. Atlanta: American Cancer Society; 2008.

Chokkalingam AP, Stanczyk FZ, Reichardt JK, Hsing AW. Molecular epidemiology of prostate cancer: hormone-related genetic loci. Front Biosci 2007; 12: 3436-60. http://dx.doi.org/10.2741/2325

Chu LW, Meyer TE, Li Q, Menashe I, Yu K, Rosenberg PS, et al. Association between genetic variants in the 8q24 cancer risk regions and circulating levels of androgens and sex hormone-binding globulin. Cancer Epidemiol Biomarkers Prev 2010; 19(7): 1848-54. http://dx.doi.org/10.1158/1055-9965.EPI-10-0101

Pollard M, Luckert PH, Schmidt MA. Induction of prostate adenocarcinomas in Lobund Wistar rats by testosterone. Prostate 1982; 3(6): 563-8. http://dx.doi.org/10.1002/pros.2990030605

Cavalieri EL, Devanesan P, Bosland MC, Badawi AF, Rogan EG. Catechol estrogen metabolites and conjugates in different regions of the prostate of Noble rats treated with 4-hydroxyestradiol: implications for estrogen-induced initiation of prostate cancer. Carcinogenesis 2002; 23(2): 329-33. http://dx.doi.org/10.1093/carcin/23.2.329

Morgentaler A. Guilt by association: a historial perspective on Huggins, testosterone therapy, and prostate cancer. J Sex Med 2008; 5: 1834-40. http://dx.doi.org/10.1111/j.1743-6109.2008.00889.x

Hsing AW, Reichardt JK, Stanczyk FZ. Hormones and prostate cancer: current perspectives and future directions. Prostate 2002; 52(3): 213-35. http://dx.doi.org/10.1002/pros.10108

Huggins C, Hodges R. Studies on prostate cancer: 1. The effects of castration, of estrogen, and androgen injection on serum phosphatases in metastatic carcinoma of the prostate Cancer Res 1941; 1: 203.

Hsing AW, Chu LW, Stanczyk FZ. Androgen and prostate cancer: is the hypothesis dead? Cancer Epidemiol Biomarkers Prev 2008; 17(10): 2525-30. http://dx.doi.org/10.1158/1055-9965.EPI-08-0448

Cunningham JM, Hebbring SJ, McDonnell SK, Cicek MS, Christensen GB, Wang L, et al. Evaluation of genetic variations in the androgen and estrogen metabolic pathways as risk factors for sporadic and familial prostate cancer. Cancer Epidemiol Biomarkers Prev 2007; 16(5): 969-78. http://dx.doi.org/10.1158/1055-9965.EPI-06-0767

Weiss JM, Huang WY, Rinaldi S, Fears TR, Chatterjee N, Hsing AW, et al. Endogenous sex hormones and the risk of prostate cancer: a prospective study. Int J Cancer 2008; 122(10): 2345-50. http://dx.doi.org/10.1002/ijc.23326

Rohrmann S, Nelson WG, Rifai N, Brown TR, Dobs A, Kanarek N, et al. Serum estrogen, but not testosterone, levels differ between black and white men in a nationally representative sample of Americans. J Clin Endocrinol Metab 2007; 92(7): 2519-25. http://dx.doi.org/10.1210/jc.2007-0028

Roddam AW, Allen NE, Appleby P, Key TJ. Endogenous sex hormones and prostate cancer: a collaborative analysis of 18 prospective studies. J Natl Cancer Inst 2008; 100(3): 170-83. http://dx.doi.org/10.1093/jnci/djm323

Li J, Coates RJ, Gwinn M, Khoury MJ. Steroid 5-{alpha}-Reductase Type 2 (SRD5a2) Gene Polymorphisms and Risk of Prostate Cancer: A HuGE Review. Am J Epidemiol 2009.

Mo Z, Gao Y, Cao Y, Gao F, Jian L. An updating meta-analysis of the GSTM1, GSTT1, and GSTP1 polymorphisms and prostate cancer: a HuGE review. Prostate 2009; 69(6): 662-88. http://dx.doi.org/10.1002/pros.20907

Keshava C, McCanlies EC, Weston A. CYP3A4 polymorphisms--potential risk factors for breast and prostate cancer: a HuGE review. Am J Epidemiol 2004; 160(9): 825-41. http://dx.doi.org/10.1093/aje/kwh294

Chu LW, Reichardt JK, Hsing AW. Androgens and the molecular epidemiology of prostate cancer. Curr Opin Endocrinol Diabetes Obes 2008; 15(3): 261-70. http://dx.doi.org/10.1097/MED.0b013e3282febcf6

Takase Y, Levesque MH, Luu-The V, El-Alfy M, Labrie F, Pelletier G. Expression of enzymes involved in estrogen metabolism in human prostate. J Histochem Cytochem 2006; 54(8): 911-21. http://dx.doi.org/10.1369/jhc.6A6927.2006

Guillemette C, Belanger A, Lepine J. Metabolic inactivation of estrogens in breast tissue by UDP-glucuronosyltransferase enzymes: an overview. Breast Cancer Res 2004; 6(6): 246-54. http://dx.doi.org/10.1186/bcr936

HGNC Database, HUGO Gene Nomenclature Committee (HGNC), EMBL Outstation - Hinxton, European Bioinformatics Institute

Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 2007; 35(Database issue): D26-31. http://dx.doi.org/10.1093/nar/gkl993

Liu AJ, Furusato B, Ravindranath L, Chen YM, Srikantan V, McLeod DG, et al. Quantitative analysis of a panel of gene expression in prostate cancer--with emphasis on NPY expression analysis. J Zhejiang Univ Sci B 2007; 8(12): 853-9. http://dx.doi.org/10.1631/jzus.2007.B0853

Cookson MS, Reuter VE, Linkov I, Fair WR. Glutathione S-transferase PI (GST-pi) class expression by immunohistochemistry in benign and malignant prostate tissue. J Urol 1997; 157(2): 673-6. http://dx.doi.org/10.1016/S0022-5347(01)65248-0

Moskaluk CA, Duray PH, Cowan KH, Linehan M, Merino MJ. Immunohistochemical expression of pi-class glutathione S-transferase is down-regulated in adenocarcinoma of the prostate. Cancer 1997; 79(8): 1595-9. http://dx.doi.org/10.1002/(SICI)1097-0142(19970415)79:8<1595::AID-CNCR23>3.0.CO;2-S

Parsons JK, Nelson CP, Gage WR, Nelson WG, Kensler TW, De Marzo AM. GSTA1 expression in normal, preneoplastic, and neoplastic human prostate tissue. Prostate 2001; 49(1): 30-7. http://dx.doi.org/10.1002/pros.1115

Stephenson AJ, Smith A, Kattan MW, Satagopan J, Reuter VE, Scardino PT, et al. Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy. Cancer 2005; 104(2): 290-8. http://dx.doi.org/10.1002/cncr.21157

Kristiansen G, Pilarsky C, Wissmann C, Kaiser S, Bruemmendorf T, Roepcke S, et al. Expression profiling of microdissected matched prostate cancer samples reveals CD166/MEMD and CD24 as new prognostic markers for patient survival. J Pathol 2005; 205(3): 359-76. http://dx.doi.org/10.1002/path.1676

Montironi R, Mazzucchelli R, Pomante R, Thompson D, Duval da Silva V, Vaught L, et al. Immunohistochemical expression of pi class glutathione S-transferase in the basal cell layer of benign prostate tissue following chronic treatment with finasteride. J Clin Pathol 1999; 52(5): 350-4. http://dx.doi.org/10.1136/jcp.52.5.350

Li M, Ittmann MM, Rowley DR, Knowlton AA, Vaid AK, Epner DE. Glutathione S-transferase pi is upregulated in the stromal compartment of hormone independent prostate cancer. Prostate 2003; 56(2): 98-105. http://dx.doi.org/10.1002/pros.10249

Bostwick DG, Meiers I, Shanks JH. Glutathione S-transferase: differential expression of alpha, mu, and pi isoenzymes in benign prostate, prostatic intraepithelial neoplasia, and prostatic adenocarcinoma. Hum Pathol 2007; 38(9): 1394-401. http://dx.doi.org/10.1016/j.humpath.2007.02.008

Nelson WG, De Marzo AM, Yegnasubramanian S. Epigenetic alterations in human prostate cancers. Endocrinology 2009; 150(9): 3991-4002. http://dx.doi.org/10.1210/en.2009-0573

Gilbert SF. Ageing and cancer as diseases of epigenesis. J Biosci 2009; 34(4): 601-4. http://dx.doi.org/10.1007/s12038-009-0077-4

Petronis A. Epigenetics and twins: three variations on the theme. Trends Genet 2006; 22(7): 347-50. http://dx.doi.org/10.1016/j.tig.2006.04.010

Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet 2007; 23(8): 413-8. http://dx.doi.org/10.1016/j.tig.2007.05.008

Liu R, Yin L, Pu Y, Li Y, Liang G, Zhang J, et al. Functional alterations in the glutathione S-transferase family associated with enhanced occurrence of esophageal carcinoma in China. J Toxicol Environ Health A 2010; 73(7): 471-82. http://dx.doi.org/10.1080/15287390903523394

Stephen JK, Chen KM, Raitanen M, Grenman S, Worsham MJ. DNA hypermethylation profiles in squamous cell carcinoma of the vulva. Int J Gynecol Pathol 2009; 28(1): 63-75. http://dx.doi.org/10.1097/PGP.0b013e31817d9c61

Yuan Y, Qian ZR, Sano T, Asa SL, Yamada S, Kagawa N, et al. Reduction of GSTP1 expression by DNA methylation correlates with clinicopathological features in pituitary adenomas. Mod Pathol 2008; 21(7): 856-65. http://dx.doi.org/10.1038/modpathol.2008.60

Kim J, Lee HS, Bae SI, Lee YM, Kim WH. Silencing and CpG island methylation of GSTP1 is rare in ordinary gastric carcinomas but common in Epstein-Barr virus-associated gastric carcinomas. Anticancer Res 2005; 25(6B): 4013-9.

Brabender J, Lord RV, Wickramasinghe K, Metzger R, Schneider PM, Park JM, et al. Glutathione S-transferase-pi expression is downregulated in patients with Barrett's esophagus and esophageal adenocarcinoma. J Gastrointest Surg 2002; 6(3): 359-67. http://dx.doi.org/10.1016/S1091-255X(02)00003-3

Laborde E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ 2010; 17(9): 1373-80. http://dx.doi.org/10.1038/cdd.2010.80

Tew KD. TLK-286: a novel glutathione S-transferase-activated prodrug. Expert Opin Investig Drugs 2005; 14(8): 1047-54. http://dx.doi.org/10.1517/13543784.14.8.1047

Montironi R, Mazzucchelli R, Stramazzotti D, Pomante R, Thompson D, Bartels PH. Expression of pi-class glutathione S-transferase: two populations of high grade prostatic intraepithelial neoplasia with different relations to carcinoma. Mol Pathol 2000; 53(3): 122-8. http://dx.doi.org/10.1136/mp.53.3.122

Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON. Identification of a cell of origin for human prostate cancer. Science 2010; 329(5991): 568-71. http://dx.doi.org/10.1126/science.1189992

Bianco-Miotto T, Chiam K, Buchanan G, Jindal S, Day TK, Thomas M, et al. Global Levels of Specific Histone Modifications and an Epigenetic Gene Signature Predict Prostate Cancer Progression and Development. Cancer Epidemiol Biomarkers Prev 2010. http://dx.doi.org/10.1158/1055-9965.EPI-10-0555

Elek J, Park KH, Narayanan R. Microarray-based expression profiling in prostate tumors. In Vivo 2000; 14(1): 173-82.

Chetcuti A, Margan S, Mann S, Russell P, Handelsman D, Rogers J, et al. Identification of differentially expressed genes in organ-confined prostate cancer by gene expression array. Prostate 2001; 47(2): 132-40. http://dx.doi.org/10.1002/pros.1056

Cooper CS, Campbell C, Jhavar S. Mechanisms of Disease: biomarkers and molecular targets from microarray gene expression studies in prostate cancer. Nat Clin Pract Urol 2007; 4(12): 677-87. http://dx.doi.org/10.1038/ncpuro0946

Qian DZ, Huang CY, O'Brien CA, Coleman IM, Garzotto M, True LD, et al. Prostate cancer-associated gene expression alterations determined from needle biopsies. Clin Cancer Res 2009; 15(9): 3135-42. http://dx.doi.org/10.1158/1078-0432.CCR-08-1982

Bostwick DG, Shan A, Qian J, Darson M, Maihle NJ, Jenkins RB, et al. Independent origin of multiple foci of prostatic intraepithelial neoplasia: comparison with matched foci of prostate carcinoma. Cancer 1998; 83(9): 1995-2002. http://dx.doi.org/10.1002/(SICI)1097-0142(19981101)83:9<1995::AID-CNCR16>3.0.CO;2-2

Lin DW, Coleman IM, Hawley S, Huang CY, Dumpit R, Gifford D, et al. Influence of surgical manipulation on prostate gene expression: implications for molecular correlates of treatment effects and disease prognosis. J Clin Oncol 2006; 24(23): 3763-70. http://dx.doi.org/10.1200/JCO.2005.05.1458

Kim D, Gregory CW, Smith GJ, Mohler JL. Immunohistochemical quantitation of androgen receptor expression using color video image analysis. Cytometry 1999; 35(1): 2-10. http://dx.doi.org/10.1002/(SICI)1097-0320(19990101)35:1<2::AID-CYTO2>3.0.CO;2-Y

True L, Feng Z. Immunohistochemical validation of expression microarray results. J Mol Diagn 2005; 7(2): 149-51. http://dx.doi.org/10.1016/S1525-1578(10)60540-5

Singh SS, Mehedint DC, Ford OH, 3rd, Maygarden SJ, Ruiz B, Mohler JL. Feasibility of constructing tissue microarrays from diagnostic prostate biopsies. Prostate 2007; 67(10): 1011-8. http://dx.doi.org/10.1002/pros.20603

Camp RL, Neumeister V, Rimm DL. A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol 2008; 26(34): 5630-7. http://dx.doi.org/10.1200/JCO.2008.17.3567

Jhavar S, Corbishley CM, Dearnaley D, Fisher C, Falconer A, Parker C, et al. Construction of tissue microarrays from prostate needle biopsy specimens. Br J Cancer 2005; 93(4): 478-82. http://dx.doi.org/10.1038/sj.bjc.6602726

Rasiah KK, Gardiner-Garden M, Padilla EJ, Moller G, Kench JG, Alles MC, et al. HSD17B4 overexpression, an independent biomarker of poor patient outcome in prostate cancer. Mol Cell Endocrinol 2009; 301(1-2): 89-96. http://dx.doi.org/10.1016/j.mce.2008.11.021

Takase Y, Luu-The V, Poisson-Pare D, Labrie F, Pelletier G. Expression of sulfotransferase 1E1 in human prostate as studied by in situ hybridization and immunocytochemistry. Prostate 2007; 67(4): 405-9. http://dx.doi.org/10.1002/pros.20525

Ahmed H. Promoter Methylation in Prostate Cancer and its Application for the Early Detection of Prostate Cancer Using Serum and Urine Samples. Biomark Cancer 2010; 2010(2): 17-33. http://dx.doi.org/10.4137/BIC.S3187

Baker M. Epigenome: mapping in motion. Nature Methods 2010; 7(3): 181-5. http://dx.doi.org/10.1038/nmeth0310-181

Kondo Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J 2009; 50(4): 455-63. http://dx.doi.org/10.3349/ymj.2009.50.4.455

Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2010; 31(1): 27-36. http://dx.doi.org/10.1093/carcin/bgp220

Muhonen P, Holthofer H. Epigenetic and microRNA-mediated regulation in diabetes. Nephrol Dial Transplant 2009; 24(4): 1088-96. http://dx.doi.org/10.1093/ndt/gfn728

Lim S, Metzger E, Schule R, Kirfel J, Buettner R. Epigenetic regulation of cancer growth by histone demethylases. Int J Cancer 2010; 127(9): 1991-8. http://dx.doi.org/10.1002/ijc.25538

Rauhala HE, Jalava SE, Isotalo J, Bracken H, Lehmusvaara S, Tammela TL, et al. miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J Cancer 2010; 127(6): 1363-72. http://dx.doi.org/10.1002/ijc.25162

Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, et al. Serum miRNA-21: Elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 2010.

Pang Y, Young CY, Yuan H. MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai) 2010; 42(6): 363-9. http://dx.doi.org/10.1093/abbs/gmq038

Manoharan M, Ramachandran K, Soloway MS, Singal R. Epigenetic targets in the diagnosis and treatment of prostate cancer. Int Braz J Urol 2007; 33(1): 11-8. http://dx.doi.org/10.1590/S1677-55382007000100003

Bock CH. Epigenetic biomarker development. Epigenomics 2009; 1(1): 99-110. http://dx.doi.org/10.2217/epi.09.6

Park JO, Yeh MM. Clinical significance and implication of neoangiogenesis in hepatocellular carcinoma. J Gastroenterol Hepatol 2011; 26(5): 792-3. http://dx.doi.org/10.1111/j.1440-1746.2011.06681.x

Kakinoki K, Nakamoto Y, Kagaya T, Tsuchiyama T, Sakai Y, Nakahama T, et al. Prevention of intrahepatic metastasis of liver cancer by suicide gene therapy and chemokine ligand 2/monocyte chemoattractant protein-1 delivery in mice. J Gene Med 2010; 12(12): 1002-13. http://dx.doi.org/10.1002/jgm.1528

El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999; 340(10): 745-50. http://dx.doi.org/10.1056/NEJM199903113401001

Chen ZY, Wei W, Guo ZX, Lin JR, Shi M, Guo RP. Morphologic classification of microvessels in hepatocellular carcinoma is associated with the prognosis after resection. J Gastroenterol Hepatol 2011; 26(5): 866-74. http://dx.doi.org/10.1111/j.1440-1746.2010.06511.x

Izumi N, Asahina Y, Noguchi O, Uchihara M, Kanazawa N, Itakura J, et al. Risk factors for distant recurrence of hepatocellular carcinoma in the liver after complete coagulation by microwave or radiofrequency ablation. Cancer 2001; 91(5): 949-56. http://dx.doi.org/10.1002/1097-0142(20010301)91:5<949::AID-CNCR1084>3.0.CO;2-H

Frachon S, Gouysse G, Dumortier J, Couvelard A, Nejjari M, Mion F, et al. Endothelial cell marker expression in dysplastic lesions of the liver: an immunohistochemical study. J Hepatol 2001; 34(6): 850-7. http://dx.doi.org/10.1016/S0168-8278(01)00049-6

Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006; 45(4): 529-38. http://dx.doi.org/10.1016/j.jhep.2006.05.013

Morgan TR, Mandayam S, Jamal MM. Alcohol and hepatocellular carcinoma. Gastroenterology 2004; 127(5 Suppl 1): S87-96. http://dx.doi.org/10.1053/j.gastro.2004.09.020

Tanigawa N, Lu C, Mitsui T, Miura S. Quantitation of sinusoid-like vessels in hepatocellular carcinoma: its clinical and prognostic significance. Hepatology 1997; 26(5): 1216-23.

Pang RW, Poon RT. Clinical implications of angiogenesis in cancers. Vasc Health Risk Manag 2006; 2(2): 97-108. http://dx.doi.org/10.2147/vhrm.2006.2.2.97

Poon RT, Ng IO, Lau C, Yu WC, Yang ZF, Fan ST, et al. Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma: a prospective study. J Clin Oncol 2002; 20(7): 1775-85. http://dx.doi.org/10.1200/JCO.2002.07.089

Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 1995; 147(1): 9-19.

Mitsuhashi N, Shimizu H, Ohtsuka M, Wakabayashi Y, Ito H, Kimura F, et al. Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology 2003; 37(5): 1105-13. http://dx.doi.org/10.1053/jhep.2003.50204

Mineo TC, Ambrogi V, Baldi A, Rabitti C, Bollero P, Vincenzi B, et al. Prognostic impact of VEGF, CD31, CD34, and CD105 expression and tumour vessel invasion after radical surgery for IB-IIA non-small cell lung cancer. J Clin Pathol 2004; 57(6): 591-7. http://dx.doi.org/10.1136/jcp.2003.013508

Sun HC, Tang ZY, Li XM, Zhou YN, Sun BR, Ma ZC. Microvessel density of hepatocellular carcinoma: its relationship with prognosis. J Cancer Res Clin Oncol 1999; 125(7): 419-26. http://dx.doi.org/10.1007/s004320050296

Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29(6 Suppl 16): 15-8. http://dx.doi.org/10.1016/S0093-7754(02)70065-1

Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag 2006; 2(3): 213-9. http://dx.doi.org/10.2147/vhrm.2006.2.3.213

Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 1995; 36(2): 169-80. http://dx.doi.org/10.1007/BF00666038

Yao Y, Kubota T, Takeuchi H, Sato K. Prognostic significance of microvessel density determined by an anti-CD105/endoglin monoclonal antibody in astrocytic tumors: comparison with an anti-CD31 monoclonal antibody. Neuropathology 2005; 25(3): 201-6. http://dx.doi.org/10.1111/j.1440-1789.2005.00632.x

Sumpio BE, Yun S, Cordova AC, Haga M, Zhang J, Koh Y, et al. MAPKs (ERK1/2, p38) and AKT can be phosphorylated by shear stress independently of platelet endothelial cell adhesion molecule-1 (CD31) in vascular endothelial cells. J Biol Chem 2005; 280(12): 11185-91. http://dx.doi.org/10.1074/jbc.M414631200

Messerini L, Novelli L, Comin CE. Microvessel density and clinicopathological characteristics in hepatitis C virus and hepatitis B virus related hepatocellular carcinoma. J Clin Pathol 2004; 57(8): 867-71. http://dx.doi.org/10.1136/jcp.2003.015784

Kiss J, Timar J, Somlai B, Gilde K, Fejos Z, Gaudi I, et al. Association of microvessel density with infiltrating cells in human cutaneous malignant melanoma. Pathol Oncol Res 2007; 13(1): 21-31. http://dx.doi.org/10.1007/BF02893437

Desmet VJ. East-West pathology agreement on precancerous liver lesions and early hepatocellular carcinoma. Hepatology 2009; 49(2): 355-7. http://dx.doi.org/10.1002/hep.22681

Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 2009; 49(2): 658-64. http://dx.doi.org/10.1002/hep.22709

Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008; 48(4): 1312-27. http://dx.doi.org/10.1002/hep.22506

Thomas MB, Abbruzzese JL. Opportunities for targeted therapies in hepatocellular carcinoma. J Clin Oncol 2005; 23(31): 8093-108. http://dx.doi.org/10.1200/JCO.2004.00.1537

Saad RS, Lindner JL, Liu Y, Silverman JF. Lymphatic vessel density as prognostic marker in esophageal adenocarcinoma. Am J Clin Pathol 2009; 131(1): 92-8. http://dx.doi.org/10.1309/AJCPKWUQSIPVG90H

Mohammed RA, Martin SG, Gill MS, Green AR, Paish EC, Ellis IO. Improved methods of detection of lymphovascular invasion demonstrate that it is the predominant method of vascular invasion in breast cancer and has important clinical consequences. Am J Surg Pathol 2007; 31(12): 1825-33. http://dx.doi.org/10.1097/PAS.0b013e31806841f6

El-Gohary YM, Metwally G, Saad RS, Robinson MJ, Mesko T, Poppiti RJ. Prognostic significance of intratumoral and peritumoral lymphatic density and blood vessel density in invasive breast carcinomas. Am J Clin Pathol 2008; 129(4): 578-86. http://dx.doi.org/10.1309/2HGNJ1GU57JMBJAQ

Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 2006; 54(4): 385-95. http://dx.doi.org/10.1369/jhc.4A6514.2005

Hoda SA, Resetkova E, Yusuf Y, Cahan A, Rosen PP. Megakaryocytes mimicking metastatic breast carcinoma. Archiv Pathol Lab Med 2002; 126(5): 618-20.

McKenney JK, Weiss SW, Folpe AL. CD31 expression in intratumoral macrophages: a potential diagnostic pitfall. Am J Surg Pathol 2001; 25(9): 1167-73. http://dx.doi.org/10.1097/00000478-200109000-00007

Govender D, Harilal P, Dada M, Chetty R. CD31 (JC70) expression in plasma cells: an immunohistochemical analysis of reactive and neoplastic plasma cells. J Clin Pathol 1997; 50(6): 490-3. http://dx.doi.org/10.1136/jcp.50.6.490

Rosso R, Lucioni M. Normal and neoplastic cells of brown adipose tissue express the adhesion molecule CD31. Archiv Pathol Lab Med 2006; 130(4): 480-2.

Hassanein NM, Alcancia F, Perkinson KR, Buckley PJ, Lagoo AS. Distinct expression patterns of CD123 and CD34 on normal bone marrow B-cell precursors ("hematogones") and B lymphoblastic leukemia blasts. Am J Clin Pathol 2009; 132(4): 573-80. http://dx.doi.org/10.1309/AJCPO4DS0GTLSOEI

Hirose T, Tani T, Shimada T, Ishizawa K, Shimada S, Sano T. Immunohistochemical demonstration of EMA/Glut1-positive perineurial cells and CD34-positive fibroblastic cells in peripheral nerve sheath tumors. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2003; 16(4): 293-8. http://dx.doi.org/10.1097/01.MP.0000062654.83617.B7

Bishayee A, Darvesh AS. Angiogenesis in hepatocellular carcinoma: a potential target for chemoprevention and therapy. Curr Cancer Drug Targets 2012; 12(9): 1095-118.




How to Cite

Jamie Ritchey, Wilfried Karmaus, Tara Sabo-Attwood, Susan E. Steck, & Hongmei Zhang. (2013). A Review of the Expression of Genes Involved in Sex Steroid Hormone Metabolism in Prostate Tissue: A Need for Epigenetic Information. Journal of Analytical Oncology, 2(3),  142–150. https://doi.org/10.6000/1927-7229.2013.02.03.3