Hepatocellular Carcinoma Microvessel Density Quantitation with Image Analysis: Correlation with Prognosis


  • Amr Mohamed Department of Pathology and Laboratory Medicine, Department of Medical Oncology, Emory University, Atlanta, GA, USA
  • Shelley A. Caltharp Department of Pathology and Laboratory Medicine, Department of Medical Oncology, Emory University, Atlanta, GA, USA
  • Jason Wang Department of Pathology and Laboratory Medicine, Department of Medical Oncology, Emory University, Atlanta, GA, USA
  • Cynthia Cohen Department of Pathology and Laboratory Medicine, Department of Medical Oncology, Emory University, Atlanta, GA, USA
  • Alton B. Farris Department of Pathology and Laboratory Medicine, Department of Medical Oncology, Emory University, Atlanta, GA, USA




Hepatocellular carcinoma, microvessel density, immunohistochemistry, prognosis


 Hepatocellular carcinoma (HCC) has a progression considered to be dependent on angiogenesis. Intratumoral microvessel density (MVD) has been associated with metastasis and recurrence risk; however, selection bias, counting errors, and lack of standardized assessment criteria have limited the clinical utility of angiogenesis quantitation. Therefore, we analyzed HCC angiogenesis with image cytometry using different methods and determined the correlation to prognosis. Tissue microarrays with 135 HCCs were CD31 and CD34 immunostained and quantitated with the Dako ACIS III Image Cytometer labeling index (LI) and Aperio Scanscope XT and MVD algorithm. LI and MVD were compared to each other and to pathologic features and prognosis (recurrence free survival). Using median cutoffs of microvesselquantitation, survival curve analysis showed a statistically significant difference between CD31 MVD algorithm measurement and prognosis (low MVD mean survival = 56.6 months and high MVD mean = 26.5 months; Log-Rank P = 0.0076). Survival was not significantly related to CD31 LI, CD34 LI or CD34 MVD. By linear regression, a direct correlation was observed between CD31 and CD34 using MVD (r = 0.45, P <0.0001), between CD31 MVD and CD31 LI (r = 0.55, P < 0.0001), and between CD31 LI and CD34 LI (r = 0.51, P < 0.0001). In addition, there was a weak but statistically significant relationship between CD31 MVD and CD34 LI (r = 0.25, P = 0.0050). Together, this data confirms previous studies linking angiogenesis to disease prognosis and suggests the utility of MVD image analysis algorithms.


Park JO, Yeh MM. Clinical significance and implication of neoangiogenesis in hepatocellular carcinoma. J Gastroenterol Hepatol. 2011; 26(5): 792-3. http://dx.doi.org/10.1111/j.1440-1746.2011.06681.x

Kakinoki K, Nakamoto Y, Kagaya T, Tsuchiyama T, Sakai Y, Nakahama T, et al. Prevention of intrahepatic metastasis of liver cancer by suicide gene therapy and chemokine ligand 2/monocyte chemoattractant protein-1 delivery in mice. J Gene Med. 2010; 12(12): 1002-13. http://dx.doi.org/10.1002/jgm.1528

El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med. 1999; 340(10): 745-50. http://dx.doi.org/10.1056/NEJM199903113401001

Chen ZY, Wei W, Guo ZX, Lin JR, Shi M, Guo RP. Morphologic classification of microvessels in hepatocellular carcinoma is associated with the prognosis after resection. J Gastroenterol Hepatol. 2011; 26(5): 866-74. http://dx.doi.org/10.1111/j.1440-1746.2010.06511.x

Izumi N, Asahina Y, Noguchi O, Uchihara M, Kanazawa N, Itakura J, et al. Risk factors for distant recurrence of hepatocellular carcinoma in the liver after complete coagulation by microwave or radiofrequency ablation. Cancer. 2001; 91(5): 949-56. http://dx.doi.org/10.1002/1097-0142(20010301)91:5<949::AID-CNCR1084>3.0.CO;2-H

Frachon S, Gouysse G, Dumortier J, Couvelard A, Nejjari M, Mion F, et al. Endothelial cell marker expression in dysplastic lesions of the liver: an immunohistochemical study. J Hepatol. 2001; 34(6): 850-7. http://dx.doi.org/10.1016/S0168-8278(01)00049-6

Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006; 45(4): 529-38. http://dx.doi.org/10.1016/j.jhep.2006.05.013

Morgan TR, Mandayam S, Jamal MM. Alcohol and hepatocellular carcinoma. Gastroenterology 2004; 127(5 Suppl 1): S87-96. http://dx.doi.org/10.1053/j.gastro.2004.09.020

Tanigawa N, Lu C, Mitsui T, Miura S. Quantitation of sinusoid-like vessels in hepatocellular carcinoma: its clinical and prognostic significance. Hepatology 1997; 26(5): 1216-23.

Pang RW, Poon RT. Clinical implications of angiogenesis in cancers. Vasc Health Risk Manag 2006; 2(2): 97-108. http://dx.doi.org/10.2147/vhrm.2006.2.2.97

Poon RT, Ng IO, Lau C, Yu WC, Yang ZF, Fan ST, et al. Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma: a prospective study. J Clin Oncol 2002; 20(7): 1775-85. http://dx.doi.org/10.1200/JCO.2002.07.089

Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 1995; 147(1): 9-19.

Mitsuhashi N, Shimizu H, Ohtsuka M, Wakabayashi Y, Ito H, Kimura F, et al. Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology 2003; 37(5): 1105-13. http://dx.doi.org/10.1053/jhep.2003.50204

Mineo TC, Ambrogi V, Baldi A, Rabitti C, Bollero P, Vincenzi B, et al. Prognostic impact of VEGF, CD31, CD34, and CD105 expression and tumour vessel invasion after radical surgery for IB-IIA non-small cell lung cancer. J Clin Pathol 2004; 57(6): 591-7. http://dx.doi.org/10.1136/jcp.2003.013508

Sun HC, Tang ZY, Li XM, Zhou YN, Sun BR, Ma ZC. Microvessel density of hepatocellular carcinoma: its relationship with prognosis. J Cancer Res Clin Oncol 1999; 125(7): 419-26. http://dx.doi.org/10.1007/s004320050296

Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29(6 Suppl 16): 15-8. http://dx.doi.org/10.1016/S0093-7754(02)70065-1

Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag 2006; 2(3): 213-9. http://dx.doi.org/10.2147/vhrm.2006.2.3.213

Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 1995; 36(2): 169-80. http://dx.doi.org/10.1007/BF00666038

Yao Y, Kubota T, Takeuchi H, Sato K. Prognostic significance of microvessel density determined by an anti-CD105/endoglin monoclonal antibody in astrocytic tumors: comparison with an anti-CD31 monoclonal antibody. Neuropathology 2005; 25(3): 201-6. http://dx.doi.org/10.1111/j.1440-1789.2005.00632.x

Sumpio BE, Yun S, Cordova AC, Haga M, Zhang J, Koh Y, et al. MAPKs (ERK1/2, p38) and AKT can be phosphorylated by shear stress independently of platelet endothelial cell adhesion molecule-1 (CD31) in vascular endothelial cells. J Biol Chem 2005; 280(12): 11185-91. http://dx.doi.org/10.1074/jbc.M414631200

Messerini L, Novelli L, Comin CE. Microvessel density and clinicopathological characteristics in hepatitis C virus and hepatitis B virus related hepatocellular carcinoma. J Clin Pathol 2004; 57(8): 867-71. http://dx.doi.org/10.1136/jcp.2003.015784

Kiss J, Timar J, Somlai B, Gilde K, Fejos Z, Gaudi I, et al. Association of microvessel density with infiltrating cells in human cutaneous malignant melanoma. Pathol Oncol Res 2007; 13(1): 21-31. http://dx.doi.org/10.1007/BF02893437

Desmet VJ. East-West pathology agreement on precancerous liver lesions and early hepatocellular carcinoma. Hepatology 2009; 49(2): 355-7. http://dx.doi.org/10.1002/hep.22681

Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 2009; 49(2): 658-64. http://dx.doi.org/10.1002/hep.22709

Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008; 48(4): 1312-27. http://dx.doi.org/10.1002/hep.22506

Thomas MB, Abbruzzese JL. Opportunities for targeted therapies in hepatocellular carcinoma. J Clin Oncol 2005; 23(31): 8093-108. http://dx.doi.org/10.1200/JCO.2004.00.1537

Saad RS, Lindner JL, Liu Y, Silverman JF. Lymphatic vessel density as prognostic marker in esophageal adenocarcinoma. Am J Clin Pathol 2009; 131(1): 92-8. http://dx.doi.org/10.1309/AJCPKWUQSIPVG90H

Mohammed RA, Martin SG, Gill MS, Green AR, Paish EC, Ellis IO. Improved methods of detection of lymphovascular invasion demonstrate that it is the predominant method of vascular invasion in breast cancer and has important clinical consequences. Am J Surg Pathol 2007; 31(12): 1825-33. http://dx.doi.org/10.1097/PAS.0b013e31806841f6

El-Gohary YM, Metwally G, Saad RS, Robinson MJ, Mesko T, Poppiti RJ. Prognostic significance of intratumoral and peritumoral lymphatic density and blood vessel density in invasive breast carcinomas. Am J Clin Pathol 2008; 129(4): 578-86. http://dx.doi.org/10.1309/2HGNJ1GU57JMBJAQ

Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 2006; 54(4): 385-95. http://dx.doi.org/10.1369/jhc.4A6514.2005

Hoda SA, Resetkova E, Yusuf Y, Cahan A, Rosen PP. Megakaryocytes mimicking metastatic breast carcinoma. Archiv Pathol Lab Med 2002; 126(5): 618-20.

McKenney JK, Weiss SW, Folpe AL. CD31 expression in intratumoral macrophages: a potential diagnostic pitfall. Am J Surg Pathol 2001; 25(9): 1167-73. http://dx.doi.org/10.1097/00000478-200109000-00007

Govender D, Harilal P, Dada M, Chetty R. CD31 (JC70) expression in plasma cells: an immunohistochemical analysis of reactive and neoplastic plasma cells. J Clin Pathol 1997; 50(6): 490-3. http://dx.doi.org/10.1136/jcp.50.6.490

Rosso R, Lucioni M. Normal and neoplastic cells of brown adipose tissue express the adhesion molecule CD31. Archiv Pathol Lab Med 2006; 130(4): 480-2.

Hassanein NM, Alcancia F, Perkinson KR, Buckley PJ, Lagoo AS. Distinct expression patterns of CD123 and CD34 on normal bone marrow B-cell precursors ("hematogones") and B lymphoblastic leukemia blasts. Am J Clin Pathol 2009; 132(4): 573-80. http://dx.doi.org/10.1309/AJCPO4DS0GTLSOEI

Hirose T, Tani T, Shimada T, Ishizawa K, Shimada S, Sano T. Immunohistochemical demonstration of EMA/Glut1-positive perineurial cells and CD34-positive fibroblastic cells in peripheral nerve sheath tumors. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2003; 16(4): 293-8. http://dx.doi.org/10.1097/01.MP.0000062654.83617.B7

Bishayee A, Darvesh AS. Angiogenesis in hepatocellular carcinoma: a potential target for chemoprevention and therapy. Curr Cancer Drug Targets 2012; 12(9): 1095-118.




How to Cite

Amr Mohamed, Shelley A. Caltharp, Jason Wang, Cynthia Cohen, & Alton B. Farris. (2013). Hepatocellular Carcinoma Microvessel Density Quantitation with Image Analysis: Correlation with Prognosis. Journal of Analytical Oncology, 2(3),  135–141. https://doi.org/10.6000/1927-7229.2013.02.03.2