True One Cell Chemical Analysis in Cancer Research: A Review
DOI:
https://doi.org/10.30683/1927-7229.2023.12.06Keywords:
True One Cell (TOC), metabolome, proteome, genome, fluorescence, mass spectrometry, Raman spectroscopy, microscopyAbstract
True One Cell (TOC) analysis Is becoming highly critical for functional studies of cancer cells. This is partially because it is the only form of analysis that provides an avenue for studying the heterogeneity and cell-to-cell variations of individual cancer cells, thus providing unique insight into complex regulatory processes that govern TOC functions within a tumor. Additionally, true one cell techniques are playing an increasingly important role in current attempts to implement TOC metabolomic and proteomic studies, as well as emerging attempts to spatially resolve TOC information. In this review we provide a brief overview of the basis of the field and discuss its applications in TOC metabolomics and proteomics.
References
Beton K, Wysocki P, Brozek-Pluska B. Mevastatin in colon cancer by spectroscopic and microscopic methods - Raman imaging and AFM studies 2022; 270: 120726. https://doi.org/10.1016/j.saa.2021.120726 DOI: https://doi.org/10.1016/j.saa.2021.120726
Lim B, Lin Y, Navin N. Advancing Cancer Research and Medicine with Single-Cell Genomics 2020; 37: 456-470. https://doi.org/10.1016/j.ccell.2020.03.008 DOI: https://doi.org/10.1016/j.ccell.2020.03.008
Hamilton JS, Aguilar R, Petros RA, et al. DAPNe with micro-capillary separatory chemistry-coupled to MALDI-MS for the analysis of polar and non-polar lipid metabolism in one cell 2017; 28: 918-928. https://doi.org/10.1007/s13361-017-1623-1 DOI: https://doi.org/10.1007/s13361-017-1623-1
Lv W, Fu B, Li M, et al. Determination of IC50 values of anticancer drugs on cells by D2O - single cell Raman spectroscopy 2022; 58: 2355. https://doi.org/10.1039/D1CC06857A DOI: https://doi.org/10.1039/D1CC06857A
Sun M, Yang Z. Metabolomic Studies of Live Single Cancer Stem Cells Using Mass Spectrometry 2019; 91: 2384-2391. https://doi.org/10.1021/acs.analchem.8b05166 DOI: https://doi.org/10.1021/acs.analchem.8b05166
Guido FV. US20130206976_Guido FV. Nanomanipulation-Coupled to Mass Spectrometry (II), Patent No. 08829431 B2.
Haas R, Zelezniak A, Iacovacci J, et al. Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology 2017; 6: 37-45. https://doi.org/10.1016/j.coisb.2017.08.009 DOI: https://doi.org/10.1016/j.coisb.2017.08.009
Lanekoff I, Sharma VV, Marques C. Single-cell metabolomics: where are we and where are we going? 2022; 75: 102693. https://doi.org/10.1016/j.copbio.2022.102693 DOI: https://doi.org/10.1016/j.copbio.2022.102693
Shakoor A, Gao W, Zhao L, et al. Advanced tools and methods for single-cell surgery. 8. Epub ahead of print 29 April 2022. https://doi.org/10.1038/s41378-022-00376-0 DOI: https://doi.org/10.1038/s41378-022-00376-0
Mattiuzzi C, Lippi G. Current Cancer Epidemiology 2019; 9: 217-222. https://doi.org/10.2991/jegh.k.191008.001 DOI: https://doi.org/10.2991/jegh.k.191008.001
Dharmalingam P, Venkatakrishnan K, Tan B. Probing Cancer Metastasis at a Single-Cell Level with a Raman-Functionalized Anionic Probe 2020; 20: 1054. https://doi.org/10.1021/acs.nanolett.9b04288 DOI: https://doi.org/10.1021/acs.nanolett.9b04288
Chen W, Zhou H, Zhang B, et al. Recent Progress of Micro/Nanorobots for Cell Delivery and Manipulation 2022; 32: 2110625-n/a. https://doi.org/10.1002/adfm.202110625 DOI: https://doi.org/10.1002/adfm.202110625
Guerrini L, Alvarez-Puebla RA. Surface-Enhanced Raman Spectroscopy in Cancer Diagnosis, Prognosis and Monitoring. 11. Epub ahead of print 29 May 2019. https://doi.org/10.3390/cancers11060748 DOI: https://doi.org/10.3390/cancers11060748
Horn PJ, Joshi U, Behrendt AK, et al. On-stage liquid-phase lipid microextraction coupled to nanospray mass spectro-metry for detailed, nano-scale lipid analysis 2012; 26: 957-962. https://doi.org/10.1002/rcm.6194 DOI: https://doi.org/10.1002/rcm.6194
Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular 2017; 4: 127-129. https://doi.org/10.1016/j.jcrpr.2017.07.001 DOI: https://doi.org/10.1016/j.jcrpr.2017.07.001
Fessenden M. Metabolomics: Small molecules, single cells 2016; 540: 153-155. https://doi.org/10.1038/540153a DOI: https://doi.org/10.1038/540153a
Tayanloo-Beik A, Sarvari M, Payab M, et al. OMICS insights into cancer histology; Metabolomics and proteomics approach 2020; 84: 13-20. https://doi.org/10.1016/j.clinbiochem.2020.06.008 DOI: https://doi.org/10.1016/j.clinbiochem.2020.06.008
Liu R, Yang Z. Single cell metabolomics using mass spectro-metry: Techniques and data analysis 2021; 1143: 124-134. https://doi.org/10.1016/j.aca.2020.11.020 DOI: https://doi.org/10.1016/j.aca.2020.11.020
Basu SS, Regan MS, Randall EC, et al. Rapid MALDI mass spectrometry imaging for surgical pathology. 3. Epub ahead of print 4 July 2019. https://doi.org/10.1038/s41698-019-0089-y DOI: https://doi.org/10.1038/s41698-019-0089-y
Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. 18. Epub ahead of print 5 May 2017. https://doi.org/10.1186/s13059-017-1215-1 DOI: https://doi.org/10.1186/s13059-017-1215-1
Lin D, Shen L, Luo M, et al. Circulating tumor cells: biology and clinical significance. 6. Epub ahead of print 22 November 2021. https://doi.org/10.1038/s41392-021-00817-8
Guruprasad P, Lee YG, Kim KH, et al. The current landscape of single-cell transcriptomics for cancer immunotherapy. 218. Epub ahead of print 18 December 2020. https://doi.org/10.1084/jem.20201574 DOI: https://doi.org/10.1084/jem.20201574
Yang M, Cruz Villarreal J, Ariyasinghe N, et al. Quantitative Approach for Protein Analysis in Small Cell Ensembles by an Integrated Microfluidic Chip with MALDI Mass Spectrometry 2021; 93: 6053. https://doi.org/10.1021/acs.analchem.0c04112 DOI: https://doi.org/10.1021/acs.analchem.0c04112
Angerer P, Simon L, Tritschler S, et al. Single cells make big data: New challenges and opportunities in transcriptomics 2017; 4: 85-91. https://doi.org/10.1016/j.coisb.2017.07.004 DOI: https://doi.org/10.1016/j.coisb.2017.07.004
McGuire AL, Gabriel S, Tishkoff SA, et al. The road ahead in genetics and genomics 2020; 21: 581-596. https://doi.org/10.1038/s41576-020-0272-6 DOI: https://doi.org/10.1038/s41576-020-0272-6
Dimitriu MA, Lazar-Contes I, Roszkowski M, et al. Single-Cell Multiomics Techniques: From Conception to Applications 2022; 10: 854317. https://doi.org/10.3389/fcell.2022.854317 DOI: https://doi.org/10.3389/fcell.2022.854317
Wishart DS. Proteomics and the Human Metabolome Project 2007; 4: 333-335. https://doi.org/10.1586/14789450.4.3.333 DOI: https://doi.org/10.1586/14789450.4.3.333
Phelps MS, Sturtevant D, Chapman KD, et al. Nano-manipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles 2015; 27: 187-193. https://doi.org/10.1007/s13361-015-1232-9 DOI: https://doi.org/10.1007/s13361-015-1232-9
Li X, Wang C-Y. From bulk, single-cell to spatial RNA sequencing. 13. Epub ahead of print 2021. https://doi.org/10.1038/s41368-021-00146-0 DOI: https://doi.org/10.1038/s41368-021-00146-0
Xu M, Ma X, Wei T, et al. In Situ Imaging of Live-Cell Extracellular pH during Cell Apoptosis with Surface-Enhanced Raman Spectroscopy 2018; 90: 13922-13928. https://doi.org/10.1021/acs.analchem.8b03193 DOI: https://doi.org/10.1021/acs.analchem.8b03193
Fang T, Shang W, Liu C, et al. Nondestructive Identification and Accurate Isolation of Single Cells through a Chip with Raman Optical Tweezers 2019; 91: 9932-9939. https://doi.org/10.1021/acs.analchem.9b01604 DOI: https://doi.org/10.1021/acs.analchem.9b01604
Qiu C, Zhang W, Zhou Y, et al. Highly sensitive surface-enhanced Raman scattering (SERS) imaging for phenotypic diagnosis and therapeutic evaluation of breast cancer 2023; 459: 141502. https://doi.org/10.1016/j.cej.2023.141502
Bulbul G, Chaves G, Olivier J, et al. Nanopipettes as Monitoring Probes for the Single Living Cell: State of the Art and Future Directions in Molecular Biology 2018; 7: 55. https://doi.org/10.3390/cells7060055 DOI: https://doi.org/10.3390/cells7060055
Li G, Cao Q, Liu Y, et al. Characterizing and alleviating ion suppression effects in atmospheric pressure matrix-assisted laser desorption/ionization 2019; 33: 327. https://doi.org/10.1002/rcm.8358 DOI: https://doi.org/10.1002/rcm.8358
Vandereyken K, Sifrim A, Thienpont B, et al. Methods and applications for single-cell and spatial multi-omics. Epub ahead of print 2 March 2023. https://doi.org/10.1038/s41576-023-00580-2
Harel E, Schröder L, Xu S. Novel Detection Schemes of Nuclear Magnetic Resonance and Magnetic Resonance Imaging: Applications from Analytical Chemistry to Molecular Sensors 2008; 1: 133-163. https://doi.org/10.1146/annurev.anchem.1.031207.113018 DOI: https://doi.org/10.1146/annurev.anchem.1.031207.113018
Nguyen B, Fong C, Luthra A. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients 2022; 185: 563-575.e11.
Jones RR, Hooper DC, Zhang L, et al. Raman Techniques: Fundamentals and Frontiers 2019; 14: 231-34. https://doi.org/10.1186/s11671-019-3039-2 DOI: https://doi.org/10.1186/s11671-019-3039-2
Mrđenović D, Ge W, Kumar N, et al. Nanoscale Chemical Imaging of Human Cell Membranes Using Tip‐Enhanced Raman Spectroscopy 2022; 134: n/a. https://doi.org/10.1002/ange.202210288 DOI: https://doi.org/10.1002/ange.202210288
Wu KJ. There are more viruses than stars in the universe. Why do only some infect us?, https://www.nationalgeographic.com/science/article/factors-allow-viruses-infect-humans-coronavirus (2020).
Guido F. V. Nanomanipulation-Coupled to Mass Spectrometry (III), Patent No. 09218947 B2.
Chen X, Sun M, Yang Z. Single cell mass spectrometry analysis of drug-resistant cancer cells: Metabolomics studies of synergetic effect of combinational treatment 2022; 1201: 339621. https://doi.org/10.1016/j.aca.2022.339621 DOI: https://doi.org/10.1016/j.aca.2022.339621
BECKER W. Fluorescence lifetime imaging - techniques and applications 2012; 247: 119-136. https://doi.org/10.1111/j.1365-2818.2012.03618.x DOI: https://doi.org/10.1111/j.1365-2818.2012.03618.x
Liu J, Xu T, Jin Y, et al. Progress and Clinical Application of Single-Cell Transcriptional Sequencing Technology in Cancer Research 2021; 10: 593085. https://doi.org/10.3389/fonc.2020.593085 DOI: https://doi.org/10.3389/fonc.2020.593085
Brown JM, Hoffmann WD, Alvey CM, et al. One-bead, one-compound peptide library sequencing via high-pressure ammonia cleavage coupled to nanomanipulation/ nano-electrospray ionization mass spectrometry 2010; 398: 7-14. https://doi.org/10.1016/j.ab.2009.10.044 DOI: https://doi.org/10.1016/j.ab.2009.10.044
Tajik M, Baharfar M, Donald WA. Single-cell mass spectrometry 2022; 40: 1374-1392. https://doi.org/10.1016/j.tibtech.2022.04.004 DOI: https://doi.org/10.1016/j.tibtech.2022.04.004
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023 2023; 73: 17-48. https://doi.org/10.3322/caac.21763 DOI: https://doi.org/10.3322/caac.21763
Lin D, Shen L, Luo M, et al. Circulating tumor cells: biology and clinical significance. 6. Epub ahead of print 22 November 2021. https://doi.org/10.1038/s41392-021-00817-8 DOI: https://doi.org/10.1038/s41392-021-00817-8
Microorganisms NRC (U. S. SG for the W on SL of VS. Size limits of very small microorganisms : proceedings of a workshop 1999.
Lim SB, Yeo T, Di Lee W, et al. Addressing cellular heterogeneity in tumor and circulation for refined prognostication 2019; 116: 17957-17962. https://doi.org/10.1073/pnas.1907904116 DOI: https://doi.org/10.1073/pnas.1907904116
Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022 2022; 72: 409-436. https://doi.org/10.3322/caac.21731 DOI: https://doi.org/10.3322/caac.21731
Sun W-H, Wei Y, Guo X-L, et al. Nanoliter-Scale Droplet-Droplet Microfluidic Microextraction Coupled with MALDI-TOF Mass Spectrometry for Metabolite Analysis of Cell Droplets 2020; 92: 8759. https://doi.org/10.1021/acs.analchem.0c00007 DOI: https://doi.org/10.1021/acs.analchem.0c00007
Casabella S, Scully P, Goddard N, et al. Automated analysis of single cells using Laser Tweezers Raman Spectroscopy 2016; 141: 689-696. https://doi.org/10.1039/C5AN01851J DOI: https://doi.org/10.1039/C5AN01851J
Qi G, Zhang Y, Xu S, et al. Nucleus and Mitochondria Targeting Theranostic Plasmonic Surface-Enhanced Raman Spectroscopy Nanoprobes as a Means for Revealing Molecular Stress Response Differences in Hyperthermia Cell Death between Cancerous and Normal Cells 2018; 90: 13356. https://doi.org/10.1021/acs.analchem.8b03034 DOI: https://doi.org/10.1021/acs.analchem.8b03034
Wen L, Li G, Huang T, et al. Single-cell technologies: From research to application 2022; 3: 100342. https://doi.org/10.1016/j.xinn.2022.100342 DOI: https://doi.org/10.1016/j.xinn.2022.100342
Choi JR. Advances in single cell technologies in immunology 2020; 69: 226-236. https://doi.org/10.2144/btn-2020-0047 DOI: https://doi.org/10.2144/btn-2020-0047
Merolle L, Pascolo L, Zupin L, et al. Impact of Sample Preparation Methods on Single-Cell X-ray Microscopy and Light Elemental Analysis Evaluated by Combined Low Energy X-ray Fluorescence, STXM and AFM. 28. Epub ahead of print 2023. https://doi.org/10.3390/molecules28041992 DOI: https://doi.org/10.3390/molecules28041992
Horn PJ, Ledbetter NR, James CN, et al. Visualization of Lipid Droplet Composition by Direct Organelle Mass Spectrometry 2011; 286: 3298-3306. https://doi.org/10.1074/jbc.M110.186353 DOI: https://doi.org/10.1074/jbc.M110.186353
Wieland JG, Naskar N, Rück A, et al. Fluorescence lifetime imaging and electron microscopy: a correlative approach 2022; 157: 697-702. https://doi.org/10.1007/s00418-022-02094-0 DOI: https://doi.org/10.1007/s00418-022-02094-0
Khare K, Pandey R. Cellular heterogeneity in disease severity and clinical outcome: Granular understanding of immune response is key 2022; 13: 973070. https://doi.org/10.3389/fimmu.2022.973070 DOI: https://doi.org/10.3389/fimmu.2022.973070
Schober Y, Guenther S, Spengler B, et al. Single Cell Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging 2012; 84: 6293-6297. https://doi.org/10.1021/ac301337h DOI: https://doi.org/10.1021/ac301337h
Qiu C, Zhang W, Zhou Y, et al. Highly sensitive surface-enhanced Raman scattering (SERS) imaging for phenotypic diagnosis and therapeutic evaluation of breast cancer 2023; 459: 141502. https://doi.org/10.1016/j.cej.2023.141502 DOI: https://doi.org/10.1016/j.cej.2023.141502
Han XX, Rodriguez RS, Haynes CL, et al. Surface-enhanced Raman spectroscopy. 1. Epub ahead of print 6 January 2022. https://doi.org/10.1038/s43586-021-00083-6 DOI: https://doi.org/10.1038/s43586-021-00083-6
Wang R, Kurouski D. Elucidation of Tip-Broadening Effect in Tip-Enhanced Raman Spectroscopy (TERS): A Cause of Artifacts or Potential for 3D TERS 2018; 122: 24334-24340. https://doi.org/10.1021/acs.jpcc.8b09455 DOI: https://doi.org/10.1021/acs.jpcc.8b09455
Cha J, Lee I. Single-cell network biology for resolving cellular heterogeneity in human diseases 2020; 52: 1798. https://doi.org/10.1038/s12276-020-00528-0 DOI: https://doi.org/10.1038/s12276-020-00528-0
Keller C, Maeda J, Jayaraman D, et al. Comparison of Vacuum MALDI and AP-MALDI Platforms for the Mass Spectrometry Imaging of Metabolites Involved in Salt Stress in Medicago truncatula. 9. Epub ahead of print 28 August 2018. https://doi.org/10.3389/fpls.2018.01238 DOI: https://doi.org/10.3389/fpls.2018.01238
Chen X, Peng Z, Yang Z. Metabolomics studies of cell-cell interactions using single cell mass spectrometry combined with fluorescence microscopy 2022; 13: 6687-6695. https://doi.org/10.1039/D2SC02298B DOI: https://doi.org/10.1039/D2SC02298B
Shirshin EA, Shirmanova MV, Gayer AV. Label-free sensing of cells with fluorescence lifetime imaging: The quest for metabolic heterogeneity 2022; 119: 1. https://doi.org/10.1073/pnas.2118241119 DOI: https://doi.org/10.1101/2022.01.12.476038
Liang S-B, Fu L-W. Application of single-cell technology in cancer research 2017; 35: 443-449. https://doi.org/10.1016/j.biotechadv.2017.04.001 DOI: https://doi.org/10.1016/j.biotechadv.2017.04.001
Somogyi Á. Chapter 6 - Mass spectrometry instrumentation and techniques. Elsevier B.V.
Creaser C, Ratcliffe L. Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry: A Review 2006; 2: 9-15. https://doi.org/10.2174/157341106775197420 DOI: https://doi.org/10.2174/157341106775197420
Angerer TB, Bour J, Biagi J-L, et al. Evaluation of 6 MALDI-Matrices for 10 μm Lipid Imaging and On-Tissue MSn with AP-MALDI-Orbitrap 2022; 33: 760-771. https://doi.org/10.1021/jasms.1c00327 DOI: https://doi.org/10.1021/jasms.1c00327
Zhang S, He Y, Yue S. Coherent Raman scattering imaging of lipid metabolism in cancer. Epub ahead of print 24 November 2022. https://doi.org/10.1142/S1793545822300154 DOI: https://doi.org/10.1142/S1793545822300154
Shen Y, Fukuda T. State of the art: micro-nanorobotic manipulation in single cell analysis 2014; 1: 1. https://doi.org/10.1186/s40638-014-0021-4 DOI: https://doi.org/10.1186/s40638-014-0021-4
Oliveira K, Teixeira A, Fernandes JM, et al. Multiplex SERS Phenotyping of Single Cancer Cells in Microdroplets. 11. Epub ahead of print 14 November 2022. https://doi.org/10.1002/adom.202201500 DOI: https://doi.org/10.1002/adom.202201500
Lee S, Vu HM, Lee J-H, et al. Advances in Mass Spectrometry-Based Single Cell Analysis. 12. Epub ahead of print 2 March 2023. https://doi.org/10.3390/biology12030395 DOI: https://doi.org/10.3390/biology12030395
Aljakouch K, Hilal Z, Daho I, et al. Fast and Noninvasive Diagnosis of Cervical Cancer by Coherent Anti-Stokes Raman Scattering 2019; 91: 13900-13906. https://doi.org/10.1021/acs.analchem.9b03395 DOI: https://doi.org/10.1021/acs.analchem.9b03395
Guido F. V. Nanomanipulation-Coupled to Mass Spectrometry (I), Patent No. 08766177, July 1 2014.
Lähnemann D, Köster J, Szczurek E. Eleven grand challenges in single-cell data science 2020; 21: 1-31.
Loo JF, Ho HP, Kong SK, et al. Technological Advances in Multiscale Analysis of Single Cells in Biomedicine. 3. Epub ahead of print 11 September 2019. https://doi.org/10.1002/adbi.201900138 DOI: https://doi.org/10.1002/adbi.201900138
Yin Z, Cheng X, Liu R, et al. Chemical and Topographical Single‐Cell Imaging by Near‐Field Desorption Mass Spectrometry 2019; 58: 4541. https://doi.org/10.1002/anie.201813744 DOI: https://doi.org/10.1002/anie.201813744
Manikandan M, Wu H-F. Bio-mimicked gold nanoparticles with complex fetal bovine serum as sensors for single cell MALDI MS of cancer cell and cancer stem cell 2016; 231: 154-165. https://doi.org/10.1016/j.snb.2016.02.060 DOI: https://doi.org/10.1016/j.snb.2016.02.060
Yang M, Nelson R, Ros A. Toward Analysis of Proteins in Single Cells: A Quantitative Approach Employing Isobaric Tags with MALDI Mass Spectrometry Realized with a Microfluidic Platform 2016; 88: 6672-6679. https://doi.org/10.1021/acs.analchem.5b03419 DOI: https://doi.org/10.1021/acs.analchem.5b03419
Phelps M, Hamilton J, Verbeck GF. Nanomanipulation-coupled nanospray mass spectrometry as an approach for single cell analysis 2014; 85: 124101. https://doi.org/10.1063/1.4902322 DOI: https://doi.org/10.1063/1.4902322
Seydel C. Single-cell metabolomics hits its stride 2021; 18: 1452-1456. https://doi.org/10.1038/s41592-021-01333-x DOI: https://doi.org/10.1038/s41592-021-01333-x
Lopez-Martinez MJ. Micro-Nano Technologies for Cell Manipulation and Subcellular Monitoring. IntechOpen. Epub ahead of print 1 January 2011. https://doi.org/10.5772/20038 DOI: https://doi.org/10.5772/20038
Du J, Su Y, Qian C, et al. Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells. 11. Epub ahead of print 24 September 2020. https://doi.org/10.1038/s41467-020-18376-x DOI: https://doi.org/10.1038/s41467-020-18376-x
Gross A, Schoendube J, Zimmermann S, et al. Technologies for Single-Cell Isolation 2015; 16: 16897. https://doi.org/10.3390/ijms160816897 DOI: https://doi.org/10.3390/ijms160816897
Xiao L, Bailey KA, Wang H, et al. Probing Membrane Receptor-Ligand Specificity with Surface- and Tip- Enhanced Raman Scattering 2017; 89: 9091-9099. https://doi.org/10.1021/acs.analchem.7b01796 DOI: https://doi.org/10.1021/acs.analchem.7b01796
Carter B, Zhao K. The epigenetic basis of cellular heterogeneity 2021; 22: 235-250. https://doi.org/10.1038/s41576-020-00300-0 DOI: https://doi.org/10.1038/s41576-020-00300-0
Liu J, Lian J, Chen Y, et al. Circulating Tumor Cells (CTCs): A Unique Model of Cancer Metastases and Non-invasive Biomarkers of Therapeutic Response 2021; 12: 734595. https://doi.org/10.3389/fgene.2021.734595 DOI: https://doi.org/10.3389/fgene.2021.734595
Toner M, Nagrath S, Sequist LV, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology 2007; 450: 1235-1239. https://doi.org/10.1038/nature06385 DOI: https://doi.org/10.1038/nature06385
Wang H, Meng D, Guo H, et al. Single-Cell Sequencing, an Advanced Technology in Lung Cancer Research 2021; 1895. https://doi.org/10.2147/OTT.S295102 DOI: https://doi.org/10.2147/OTT.S295102
Paidi SK, Diaz PM, Dadgar S, et al. Label-Free Raman Spectroscopy Reveals Signatures of Radiation Resistance in the Tumor Microenvironment 2019; 79: 2054. https://doi.org/10.1158/0008-5472.CAN-18-2732 DOI: https://doi.org/10.1158/0008-5472.CAN-18-2732
Marcus JM, Burke RT, DeSisto JA, et al. Longitudinal tracking of single live cancer cells to understand cell cycle effects of the nuclear export inhibitor, selinexor 2015; 5: 14391. https://doi.org/10.1038/srep14391 DOI: https://doi.org/10.1038/srep14391
Yang M, Chao T-C, Nelson R, et al. Direct detection of peptides and proteins on a microfluidic platform with MALDI mass spectrometry 2012; 404: 1681-1689. https://doi.org/10.1007/s00216-012-6257-3 DOI: https://doi.org/10.1007/s00216-012-6257-3
Mousoulis C, Xu X, Reiter DA, et al. Single cell spectroscopy: Noninvasive measures of small-scale structure and function 2013; 64: 119-128. https://doi.org/10.1016/j.ymeth.2013.07.025 DOI: https://doi.org/10.1016/j.ymeth.2013.07.025
Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research 2020; 17: 17. https://doi.org/10.1186/s12014-020-09283-w DOI: https://doi.org/10.1186/s12014-020-09283-w
Zhang X, Li Q, Xu Z, et al. Mass spectrometry-based metabolomics in health and medical science: a systematic review 2020; 1: 392-314.
Hu P, Zhang W, Xin H, et al. Single Cell Isolation and Analysis 2016; 4: 116. https://doi.org/10.3389/fcell.2016.00116 DOI: https://doi.org/10.3389/fcell.2016.00116
Vandereyken K, Sifrim A, Thienpont B, et al. Methods and applications for single-cell and spatial multi-omics. Epub ahead of print 2 March 2023. https://doi.org/10.1038/s41576-023-00580-2 DOI: https://doi.org/10.1038/s41576-023-00580-2
Khoury MJ, Holt KE. The impact of genomics on precision public health: beyond the pandemic. 13. Epub ahead of print 23 April 2021. https://doi.org/10.1186/s13073-021-00886-y DOI: https://doi.org/10.1186/s13073-021-00886-y
Han S-W, Nakamura C, Miyake J, et al. Single-Cell Manipulation and DNA Delivery Technology Using Atomic Force Microscopy and Nanoneedle 2014; 14: 57-70. https://doi.org/10.1166/jnn.2014.9115 DOI: https://doi.org/10.1166/jnn.2014.9115
Wilson RE, O’connor R, Gallops CE, et al. Immunomagnetic Capture and Multiplexed Surface Marker Detection of Circulating Tumor Cells with Magnetic Multicolor Surface-Enhanced Raman Scattering Nanotags 2020; 12: 47220. https://doi.org/10.1021/acsami.0c12395 DOI: https://doi.org/10.1021/acsami.0c12395
Wang J, Song Y. Single cell sequencing: a distinct new field 2017; 6: 1-11. https://doi.org/10.1186/s40169-017-0139-4 DOI: https://doi.org/10.1186/s40169-017-0139-4
Qiu S, Weng Y, Li Y, et al. Raman profile alterations of irradiated human nasopharyngeal cancer cells detected with laser tweezer Raman spectroscopy 2020; 1: 14368-14373. https://doi.org/10.1039/D0RA01173H DOI: https://doi.org/10.1039/D0RA01173H
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.