Uncovering the Anticancer Potential of Lichen Secondary Metabolites

Uncovering the Anticancer Potential of Lichen Secondary Metabolites

Authors

  • Patrik Simko Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Slovakia
  • Terezia Kiskova Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Slovakia

DOI:

https://doi.org/10.30683/1927-7229.2022.11.10

Keywords:

Lichens, secondary metabolites, cancer, in vitro, in vivo, atranorin, usnic acid, gyrophoric acid

Abstract

Lichens produce a plethora of primary and secondary metabolites. Secondary metabolites have several biological functions that can be used for human health. Recent studies have described their antioxidant, anti-inflammatory, antimycotic, and antibiotic/antiviral activities. However, attention has mainly been focused on their antiproliferative, cytotoxic, and anticancer effects. Because there are many publications describing the molecular mechanisms leading to the anticancer effects of lichen secondary metabolites, the aim of this review is to summarize results from current research with the main emphasis on atranorin, usnic and gyrophoric acid.

References

Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG. Secondary metabolism in the lichen symbiosis. Chemical Society Reviews 2018; 47(5): 1730-60. https://doi.org/10.1039/C7CS00431A DOI: https://doi.org/10.1039/C7CS00431A

Coutinho ID, Henning LMM, Döpp SA, Nepomuceno A, Moraes LAC, Marcolino-Gomes J, et al. Identification of primary and secondary metabolites and transcriptome profile of soybean tissues during different stages of hypoxia. Data in Brief 2018; 21: 1089-100. https://doi.org/10.1016/j.dib.2018.09.122 DOI: https://doi.org/10.1016/j.dib.2018.09.122

Erb M, Kliebenstein DJ. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiology 2020; 184(1): 39-52. https://doi.org/10.1104/pp.20.00433 DOI: https://doi.org/10.1104/pp.20.00433

Maeda HA. Evolutionary Diversification of Primary Metabolism and Its Contribution to Plant Chemical Diversity. Frontiers in Plant Science 2019; 10: 881. https://doi.org/10.3389/fpls.2019.00881 DOI: https://doi.org/10.3389/fpls.2019.00881

Pott DM, Osorio S, Vallarino JG. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. Frontiers in Plant Science 2019; 10: 835. https://doi.org/10.3389/fpls.2019.00835 DOI: https://doi.org/10.3389/fpls.2019.00835

Rehab AH, Amira AE-A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. In: Philip FB, editor. Herbal Medicine. Rijeka: IntechOpen; 2018. p. Ch. 2.

Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, et al. Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis 2018; 124: 198-202. https://doi.org/10.1016/j.micpath.2018.08.034 DOI: https://doi.org/10.1016/j.micpath.2018.08.034

Paukov A, Teptina A, Ermoshin A, Kruglova E, Shabardina L. The Role of Secondary Metabolites and Bark Chemistry in Shaping Diversity and Abundance of Epiphytic Lichens. Frontiers in Forests and Global Change 2022; 5. https://doi.org/10.3389/ffgc.2022.828211 DOI: https://doi.org/10.3389/ffgc.2022.828211

Goga M, Elečko J, Marcinčinová M, Ručová D, Bačkorová M, Bačkor M. Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. In: Merillon J-M, Ramawat KG, editors. Co-Evolution of Secondary Metabolites. Cham: Springer International Publishing; 2018. p. 1-36. https://doi.org/10.1007/978-3-319-76887-8_57-1 DOI: https://doi.org/10.1007/978-3-319-76887-8_57-1

Bhattacharyya DS, Deep P, Singh S, Nayak B. Lichen Secondary Metabolites and Its Biological Activity. American journal of Pharmtech Research 2249-3387 2016; 6: 28-44.

Lee S, Suh YJ, Yang S, Hong DG, Ishigami A, Kim H, et al. Neuroprotective and Anti-Inflammatory Effects of Evernic Acid in an MPTP-Induced Parkinson’s Disease Model. International Journal of Molecular Sciences 2021; 22(4): 2098. https://doi.org/10.3390/ijms22042098 DOI: https://doi.org/10.3390/ijms22042098

Roser LA, Erkoc P, Ingelfinger R, Henke M, Ulshöfer T, Schneider AK, et al. Lecanoric acid mediates anti-proliferative effects by an M phase arrest in colon cancer cells. Biomedicine & pharmacotherapy = Biomedecine & Pharmacotherapie 2022; 148: 112734. https://doi.org/10.1016/j.biopha.2022.112734 DOI: https://doi.org/10.1016/j.biopha.2022.112734

Goga M, Kello M, Vilkova M, Petrova K, Backor M, Adlassnig W, et al. Oxidative stress mediated by gyrophoric acid from the lichen Umbilicaria hirsuta affected apoptosis and stress/survival pathways in HeLa cells. BMC Complementary and Alternative Medicine 2019; 19(1): 221. https://doi.org/10.1186/s12906-019-2631-4 DOI: https://doi.org/10.1186/s12906-019-2631-4

Simko P, Leskanicova A, Suvakova M, Blicharova A, Karasova M, Goga M, et al. Biochemical Properties of Atranorin-Induced Behavioral and Systematic Changes of Laboratory Rats. Life 2022; 12(7): 1090. https://doi.org/10.3390/life12071090 DOI: https://doi.org/10.3390/life12071090

Cardile V, Graziano ACE, Avola R, Madrid A, Russo A. Physodic acid sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis. Toxicology in vitro: an international journal published in association with BIBRA 2022; 84: 105432. https://doi.org/10.1016/j.tiv.2022.105432 DOI: https://doi.org/10.1016/j.tiv.2022.105432

Ingólfsdóttir K. Usnic acid. Phytochemistry 2002; 61(7): 729-36. https://doi.org/10.1016/S0031-9422(02)00383-7 DOI: https://doi.org/10.1016/S0031-9422(02)00383-7

Averesch NJH, Krömer JO. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds—Present and Future Strain Construction Strategies. Frontiers in Bioengineering and Biotechnology 2018; 6. https://doi.org/10.3389/fbioe.2018.00032 DOI: https://doi.org/10.3389/fbioe.2018.00032

Anke H, Kolthoum I, Zähner H, Laatsch H. Metabolic products of microorganisms. 185. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identification and antimicrobial activity. Archives of Microbiology 1980; 126(3): 223-30. https://doi.org/10.1007/BF00409924 DOI: https://doi.org/10.1007/BF00409924

Ranković B, Mišić M. The Antimicrobial Activity of the Lichen Substances of the Lichens Cladonia Furcata, Ochrolechia Androgyna, Parmelia Caperata and Parmelia Conspresa. Biotechnology & Biotechnological Equipment 2008; 22(4): 1013-6. https://doi.org/10.1080/13102818.2008.10817601 DOI: https://doi.org/10.1080/13102818.2008.10817601

Schmeda-Hirschmann G, Tapia A, Lima B, Pertino M, Sortino M, Zacchino S, et al. A new antifungal and antiprotozoal depside from the Andean lichen Protousnea poeppigii. Phytotherapy Research: PTR 2008; 22(3): 349-55. https://doi.org/10.1002/ptr.2321 DOI: https://doi.org/10.1002/ptr.2321

Luo H, Yamamoto Y, A Kim J, Jung JS, Koh YJ, Hur J-S. Lecanoric acid, a secondary lichen substance with antioxidant properties from Umbilicaria antarctica in maritime Antarctica (King George Island). Polar Biology 2009; 32(7): 1033-40. https://doi.org/10.1007/s00300-009-0602-9 DOI: https://doi.org/10.1007/s00300-009-0602-9

Melo MG, dos Santos JP, Serafini MR, Caregnato FF, Pasquali MA, Rabelo TK, et al. Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicology in vitro: an International Journal Published in Association with BIBRA 2011; 25(2): 462-8. https://doi.org/10.1016/j.tiv.2010.11.014 DOI: https://doi.org/10.1016/j.tiv.2010.11.014

Urbanska N, Simko P, Leskanicova A, Karasova M, Jendzelovska Z, Jendzelovsky R, et al. Atranorin, a Secondary Metabolite of Lichens, Exhibited Anxiolytic/Antidepressant Activity in Wistar Rats. Life 2022; 12(11): 1850. https://doi.org/10.3390/life12111850 DOI: https://doi.org/10.3390/life12111850

Cetin Cakmak K, Gülçin İ. Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicology Reports 2019; 6: 1273-80. https://doi.org/10.1016/j.toxrep.2019.11.003 DOI: https://doi.org/10.1016/j.toxrep.2019.11.003

Popovici V, Matei E, Cozaru GC, Aschie M, Bucur L, Rambu D, et al. Usnic Acid and Usnea barbata (L.) F.H. Wigg. Dry Extracts Promote Apoptosis and DNA Damage in Human Blood Cells through Enhancing ROS Levels. Antioxidants 2021; 10(8): 1171. https://doi.org/10.3390/antiox10081171 DOI: https://doi.org/10.3390/antiox10081171

Gundogdu G, Gundogdu K, Nalci KA, Demirkaya AK, Yılmaz Tascı S, Demirkaya Miloglu F, et al. The Effect of Parietin Isolated From Rheum ribes L on In vitro Wound Model Using Human Dermal Fibroblast Cells. The International Journal of Lower Extremity wounds 2019; 18(1): 56-64. https://doi.org/10.1177/1534734618819660 DOI: https://doi.org/10.1177/1534734618819660

Studzińska-Sroka E, Piotrowska H, Kucińska M, Murias M, Bylka W. Cytotoxic activity of physodic acid and acetone extract from Hypogymnia physodes against breast cancer cell lines. Pharmaceutical Biology 2016; 54(11): 2480-5. https://doi.org/10.3109/13880209.2016.1160936 DOI: https://doi.org/10.3109/13880209.2016.1160936

Koronyo-Hamaoui M, Gaire BP, Frautschy SA, Alvarez JI. Editorial: Role of Inflammation in Neurodegenerative Diseases. Frontiers in Immunology 2022; 13. https://doi.org/10.3389/fimmu.2022.958487 DOI: https://doi.org/10.3389/fimmu.2022.958487

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9(6): 7204-18. https://doi.org/10.18632/oncotarget.23208 DOI: https://doi.org/10.18632/oncotarget.23208

Melo M, Araújo A, Serafini M, Carvalho L, Bezerra M, Ramos C, et al. Anti-inflammatory and toxicity studies of atranorin extracted from Cladina kalbii Ahti in rodents. Brazilian Journal of Pharmaceutical Sciences 2011; 47: 861-72. https://doi.org/10.1590/S1984-82502011000400024 DOI: https://doi.org/10.1590/S1984-82502011000400024

Mendili M, Khadhri A, Mediouni-Ben Jemâa J, Andolfi A, Tufano I, Aschi-Smiti S, et al. Anti-Inflammatory Potential of Compounds Isolated from Tunisian Lichens Species. Chemistry & Biodiversity 2022; 19(8): e202200134. https://doi.org/10.1002/cbdv.202200134 DOI: https://doi.org/10.1002/cbdv.202200134

Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021; 127(16): 3029-30. https://doi.org/10.1002/cncr.33587 DOI: https://doi.org/10.1002/cncr.33587

Rasul A, Hussain G, Selamoglu Z, López-Alberca M. Nature-Inspired Drugs: Expanding Horizons of Contemporary Therapeutics. Advances in Pharmacological Sciences 2019; 2019: 1-2. https://doi.org/10.1155/2019/6218183 DOI: https://doi.org/10.1155/2019/6218183

Huang M, Lu J-J, Ding J. Natural Products in Cancer Therapy: Past, Present and Future. Natural Products and Bioprospecting 2021; 11(1): 5-13. https://doi.org/10.1007/s13659-020-00293-7 DOI: https://doi.org/10.1007/s13659-020-00293-7

Bézivin C, Tomasi S, Rouaud I, Delcros JG, Boustie J. Cytotoxic activity of compounds from the lichen: Cladonia convoluta. Planta Medica 2004; 70(9): 874-7. https://doi.org/10.1055/s-2004-827240 DOI: https://doi.org/10.1055/s-2004-827240

Bogo D, de Matos MF, Honda NK, Pontes EC, Oguma PM, da Santos EC, et al. In vitro antitumour activity of orsellinates. Zeitschrift fur Naturforschung C, Journal of Biosciences 2010; 65(1-2): 43-8. https://doi.org/10.1515/znc-2010-1-208 DOI: https://doi.org/10.1515/znc-2010-1-208

Bačkorová M, Bačkor M, Mikeš J, Jendželovský R, Fedoročko P. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicology in vitro: an International Journal Published in Association with BIBRA 2011; 25(1): 37-44. https://doi.org/10.1016/j.tiv.2010.09.004 DOI: https://doi.org/10.1016/j.tiv.2010.09.004

Bačkorová M, Jendželovský R, Kello M, Bačkor M, Mikeš J, Fedoročko P. Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicology in vitro: an international Journal Published in Association with BIBRA 2012; 26(3): 462-8. https://doi.org/10.1016/j.tiv.2012.01.017 DOI: https://doi.org/10.1016/j.tiv.2012.01.017

Majchrzak-Celińska A, Kleszcz R, Studzińska-Sroka E, Łukaszyk A, Szoszkiewicz A, Stelcer E, et al. Lichen Secondary Metabolites Inhibit the Wnt/β -Catenin Pathway in Glioblastoma Cells and Improve the Anticancer Effects of Temozolomide. Cells 2022; 11(7): 1084. https://doi.org/10.3390/cells11071084 DOI: https://doi.org/10.3390/cells11071084

Kizil H, Ağar G, Anar M. Cytotoxic and antiproliferative effects of evernic acid on HeLa cell lines: A candidate anticancer drug. Journal of Biotechnology 2014; 185: S29. https://doi.org/10.1016/j.jbiotec.2014.07.098 DOI: https://doi.org/10.1016/j.jbiotec.2014.07.098

Huang Z, Zheng G, Tao J, Ruan J. Anti-inflammatory effects and mechanisms of usnic acid. Journal of Wuhan University of Technology-Mater Sci Ed 2011; 26(5): 955-9. https://doi.org/10.1007/s11595-011-0344-8 DOI: https://doi.org/10.1007/s11595-011-0344-8

Vijayakumar CS, Viswanathan S, Reddy MK, Parvathavarthini S, Kundu AB, Sukumar E. Anti-inflammatory activity of (+)-usnic acid. Fitoterapia 2000; 71(5): 564-6. https://doi.org/10.1016/S0367-326X(00)00209-4 DOI: https://doi.org/10.1016/S0367-326X(00)00209-4

Okuyama E, Umeyama K, Yamazaki M, Kinoshita Y, Yamamoto Y. Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Medica 1995; 61(2): 113-5. https://doi.org/10.1055/s-2006-958027 DOI: https://doi.org/10.1055/s-2006-958027

Dinçsoy A, Cansaran-Duman D, Corresponding, Prof A. Changes in apoptosis related gene expression profiles in cancer cell line exposed to usnic acid lichen secondary metabolite. Turkish Journal of Biology 2017; 41. https://doi.org/10.3906/biy-1609-40 DOI: https://doi.org/10.3906/biy-1609-40

Einarsdóttir E, Groeneweg J, Björnsdóttir GG, Harethardottir G, Omarsdóttir S, Ingólfsdóttir K, et al. Cellular mechanisms of the anticancer effects of the lichen compound usnic acid. Planta Medica 2010; 76(10): 969-74. https://doi.org/10.1055/s-0029-1240851 DOI: https://doi.org/10.1055/s-0029-1240851

Wu W, Gou H, Dong J, Yang X, Zhao Y, Peng H, et al. Usnic Acid Inhibits Proliferation and Migration through ATM Mediated DNA Damage Response in RKO Colorectal Cancer Cell. Current Pharmaceutical Biotechnology 2020; 21. https://doi.org/10.2174/1389201021666201002155955 DOI: https://doi.org/10.2174/1389201021666201002155955

Değerli E, Torun V, Cansaran-Duman D. miR-185-5p response to usnic acid suppresses proliferation and regulating apoptosis in breast cancer cell by targeting Bcl2. Biological Research 2020; 53(1): 19. https://doi.org/10.1186/s40659-020-00285-4 DOI: https://doi.org/10.1186/s40659-020-00285-4

Özben R, Cansaran-Duman D. The expression profiles of apoptosis-related genes induced usnic acid in SK-BR-3 breast cancer cell. Human & Experimental Toxicology 2020; 39(11): 1497-506. https://doi.org/10.1177/0960327120930257 DOI: https://doi.org/10.1177/0960327120930257

O'Neill MA, Mayer M, Murray KE, Rolim-Santos HM, Santos-Magalhães NS, Thompson AM, et al. Does usnic acid affect microtubules in human cancer cells? Brazilian Journal of Biology = Revista Brasleira de Biologia 2010; 70(3): 659-64. https://doi.org/10.1590/S1519-69842010005000013 DOI: https://doi.org/10.1590/S1519-69842010005000013

Yang Y, Nguyen TT, Jeong M-H, Crişan F, Yu YH, Ha H-H, et al. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility. Plos One 2016; 11(1): e0146575. https://doi.org/10.1371/journal.pone.0146575 DOI: https://doi.org/10.1371/journal.pone.0146575

Geng X, Zhang X, Zhou B, Zhang C, Tu J, Chen X, et al. Usnic Acid Induces Cycle Arrest, Apoptosis, and Autophagy in Gastric Cancer Cells In vitro and In vivo. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 2018; 24: 556-66. https://doi.org/10.12659/MSM.908568 DOI: https://doi.org/10.12659/MSM.908568

Kumar K, Mishra JPN, Singh RP. Usnic acid induces apoptosis in human gastric cancer cells through ROS generation and DNA damage and causes up-regulation of DNA-PKcs and γ-H2A.X phosphorylation. Chemico-Biological Interactions 2020; 315: 108898. https://doi.org/10.1016/j.cbi.2019.108898 DOI: https://doi.org/10.1016/j.cbi.2019.108898

Sun TX, Li MY, Zhang ZH, Wang JY, Xing Y, Ri M, et al. Usnic acid suppresses cervical cancer cell proliferation by inhibiting PD-L1 expression and enhancing T-lymphocyte tumor-killing activity. Phytotherapy Research 2021; 35(7): 3916-35. https://doi.org/10.1002/ptr.7103 DOI: https://doi.org/10.1002/ptr.7103

Zuo S-t, Wang L-p, Zhang Y, Zhao D-n, Li Q-s, Shao D, et al. Usnic acid induces apoptosis via an ROS-dependent mitochondrial pathway in human breast cancer cells in vitro and in vivo. RSC Advances 2015; 5(1): 153-62. https://doi.org/10.1039/C4RA12340A DOI: https://doi.org/10.1039/C4RA12340A

Studzinska-Sroka E, Galanty A, Bylka W. Atranorin - An Interesting Lichen Secondary Metabolite. Mini Reviews in Medicinal Chemistry 2017; 17(17): 1633-45. https://doi.org/10.2174/1389557517666170425105727 DOI: https://doi.org/10.2174/1389557517666170425105727

Jeon Y-J, Kim S, Kim JH, Youn UJ, Suh S-S. The Com-prehensive Roles of ATRANORIN, A Secondary Metabolite from the Antarctic Lichen Stereocaulon caespitosum, in HCC Tumorigenesis. Molecules 2019; 24(7): 1414. https://doi.org/10.3390/molecules24071414 DOI: https://doi.org/10.3390/molecules24071414

Zhou R, Yang Y, Park SY, Nguyen TT, Seo YW, Lee KH, et al. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Sci Rep 2017; 7(1): 8136. https://doi.org/10.1038/s41598-017-08225-1 DOI: https://doi.org/10.1038/s41598-017-08225-1

Harikrishnan A, Vijay Kumar V, B L, R S, Gubert S, C N P, et al. Atranorin, an antimicrobial metabolite from lichen Parmotrema rampoddense exhibited in vitro anti-breast cancer activity through interaction with Akt activity. Journal of Biomolecular Structure and Dynamics 2020; 39: 1-19. https://doi.org/10.1080/07391102.2020.1734482 DOI: https://doi.org/10.1080/07391102.2020.1734482

Solár P, Hrčková G, Koptašíková L, Velebný S, Solárová Z, Bačkor M. Murine breast carcinoma 4T1 cells are more sensitive to atranorin than normal epithelial NMuMG cells in vitro: Anticancer and hepatoprotective effects of atranorin in vivo. Chem Biol Interact 2016; 250: 27-37. https://doi.org/10.1016/j.cbi.2016.03.012 DOI: https://doi.org/10.1016/j.cbi.2016.03.012

Mohammadi M, Bagheri L, Badreldin A, Fatehi P, Pakzad L, Suntres Z, et al. Biological Effects of Gyrophoric Acid and Other Lichen Derived Metabolites, on Cell Proliferation, Apoptosis and Cell Signaling pathways. Chemico-Biological Interactions 2021; 351: 109768. https://doi.org/10.1016/j.cbi.2021.109768 DOI: https://doi.org/10.1016/j.cbi.2021.109768

Mohammadi M, Zambare V, Suntres Z, Christopher L. Isolation, Characterization, and Breast Cancer Cytotoxic Activity of Gyrophoric Acid from the Lichen Umbilicaria muhlenbergii. Processes 2022; 10(7): 1361. https://doi.org/10.3390/pr10071361 DOI: https://doi.org/10.3390/pr10071361

Burlando B, Ranzato E, Volante A, Appendino G, Pollastro F, Verotta L. Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds. Planta Medica 2009; 75(6): 607-13. https://doi.org/10.1055/s-0029-1185329 DOI: https://doi.org/10.1055/s-0029-1185329

Moreira CT, Oliveira AL, Comar JF, Peralta RM, Bracht A. Harmful effects of usnic acid on hepatic metabolism. Chem Biol Interact 2013; 203(2): 502-11. https://doi.org/10.1016/j.cbi.2013.02.001 DOI: https://doi.org/10.1016/j.cbi.2013.02.001

Yang Y, Bae WK, Lee J-Y, Choi YJ, Lee KH, Park M-S, et al. Potassium usnate, a water-soluble usnic acid salt, shows enhanced bioavailability and inhibits invasion and metastasis in colorectal cancer. Scientific Reports 2018; 8(1): 16234. https://doi.org/10.1038/s41598-018-34709-9 DOI: https://doi.org/10.1038/s41598-018-34709-9

Pyrczak-Felczykowska A, Narlawar R, Pawlik A, Guzow-Krzemińska B, Artymiuk D, Hać A, et al. Synthesis of Usnic Acid Derivatives and Evaluation of Their Antiproliferative Activity against Cancer Cells. Journal of Natural Products 2019; 82(7): 1768-78. https://doi.org/10.1021/acs.jnatprod.8b00980 DOI: https://doi.org/10.1021/acs.jnatprod.8b00980

Pyrczak-Felczykowska A, Reekie TA, Jąkalski M, Hać A, Malinowska M, Pawlik A, et al. The Isoxazole Derivative of Usnic Acid Induces an ER Stress Response in Breast Cancer Cells That Leads to Paraptosis-like Cell Death. International Journal of Molecular Sciences 2022; 23(3): 1802. https://doi.org/10.3390/ijms23031802 DOI: https://doi.org/10.3390/ijms23031802

Sandhiya V, Ubaidulla U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Future Journal of Pharmaceutical Sciences 2020; 6(1): 51. https://doi.org/10.1186/s43094-020-00050-0 DOI: https://doi.org/10.1186/s43094-020-00050-0

Moradi SZ, Momtaz S, Bayrami Z, Farzaei MH, Abdollahi M. Nanoformulations of Herbal Extracts in Treatment of Neurodegenerative Disorders. Frontiers in Bioengineering and Biotechnology 2020; 8. https://doi.org/10.3389/fbioe.2020.00238 DOI: https://doi.org/10.3389/fbioe.2020.00238

Rattan R, Shukla S, Sharma B, Bhat M. A Mini-Review on Lichen-Based Nanoparticles and Their Applications as Antimicrobial Agents. Frontiers in Microbiology 2021; 12. https://doi.org/10.3389/fmicb.2021.633090 DOI: https://doi.org/10.3389/fmicb.2021.633090

Goga M, Baláž M, Daneu N, Elečko J, Tkáčiková Ľ, Marcinčinová M, et al. Biological activity of selected lichens and lichen-based Ag nanoparticles prepared by a green solid-state mechanochemical approach. Materials science & engineering C, Materials for Biological Applications 2021; 119: 111640. https://doi.org/10.1016/j.msec.2020.111640 DOI: https://doi.org/10.1016/j.msec.2020.111640

Salah MB, Aouadhi C, Mendili M, Khadhri A. Phenolic Content, Antioxidant, Antibacterial, and Anti-Acetylcholinesterase Activities of Biosynthesized and Characterized Silver Nanoparticles from Tunisian Medicinal Lichen Species. International Journal of Medicinal Mushrooms 2022; 24(6): 79-93. https://doi.org/10.1615/IntJMedMushrooms.2022043740 DOI: https://doi.org/10.1615/IntJMedMushrooms.2022043740

Abdullah SM, Kolo K, Sajadi SM. Greener pathway toward the synthesis of lichen-based ZnO@TiO(2)@SiO(2) and Fe(3)O(4)@SiO(2) nanocomposites and investigation of their biological activities. Food Science & Nutrition 2020; 8(8): 4044-54. https://doi.org/10.1002/fsn3.1661 DOI: https://doi.org/10.1002/fsn3.1661

Alqahtani MA, Al Othman MR, Mohammed AE. Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens. Sci Rep 2020; 10(1): 16781. https://doi.org/10.1038/s41598-020-73683-z DOI: https://doi.org/10.1038/s41598-020-73683-z

Baláž M, Goga M, Hegedüs M, Daneu N, Kováčová M, Tkáčiková Lu, et al. Biomechanochemical Solid-State Synthesis of Silver Nanoparticles with Antibacterial Activity Using Lichens. ACS Sustainable Chemistry & Engineering 2020; 8(37): 13945-55. https://doi.org/10.1021/acssuschemeng.0c03211 DOI: https://doi.org/10.1021/acssuschemeng.0c03211

Dasari S, Suresh KA, Rajesh M, Siva Reddy CS, Hemalatha CS, Wudayagiri R, et al. Biosynthesis, Characterization, Antibacterial and Antioxidant Activity of Silver Nanoparticles Produced by Lichens. Journal of Bionanoscience 2013; 7(3): 237-44. https://doi.org/10.1166/jbns.2013.1140 DOI: https://doi.org/10.1166/jbns.2013.1140

Hamida RS, Ali MA, Abdelmeguid NE, Al-Zaban MI, Baz L, Bin-Meferij MM. Lichens-A Potential Source for Nanoparticles Fabrication: A Review on Nanoparticles Biosynthesis and Their Prospective Applications. Journal of Fungi (Basel, Switzerland) 2021; 7(4). https://doi.org/10.3390/jof7040291 DOI: https://doi.org/10.3390/jof7040291

Downloads

Published

2022-12-14

How to Cite

Simko, P., & Kiskova, T. (2022). Uncovering the Anticancer Potential of Lichen Secondary Metabolites. Journal of Analytical Oncology, 11, 70–78. https://doi.org/10.30683/1927-7229.2022.11.10

Issue

Section

Articles
Loading...