Differences between 66 Chemical Element Contents in Normal and Cancerous Prostate

Authors

  • Vladimir Zaichick Radionuclide Diagnostics Department, Medical Radiological Research Centre, Korolyev Str. 4, Obninsk 249036, Kaluga Region, Russia

DOI:

https://doi.org/10.6000/1927-7229.2017.06.02.1

Keywords:

Prostate cancer, prostatic chemical element contents, energy dispersive X-ray fluorescence analysis, neutron activation analysis, inductively coupled plasma atomic emission spectrometry, inductively coupled plasma mass spectrometry.

Abstract

 Prostate cancer is an internationally important health problem in man, particularly in developed countries.The aim of this exploratory study was to clarify the differences between the prostatic levels of chemical elements in patients with malignantly transformed prostate (PCa) and healthy male inhabitance. Prostatic tissue levels of 66 chemical elements were prospectively evaluated in 60 patients with PCa and 37 healthy males. Measurements were performed using a combination of five non-destructive and destructive analytical methods. A significant increase in the mean level of Ag, Al, Au, B, Ba, Be, Bi, Br, Ce, Cr, Cu, Dy, Er, Fe, Gd, Hg, Ho, Li, Mn, Nd, Ni, Pr, Sb, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, Y and Zr accompanied a decrease in the mean level of Ca, Cd, Co, K, Mg, Na, P, Rb, S, Sc, Se, and Zn was observed in the cancerous prostates. It was not found any differences in the mean prostatic level of other chemical elements including Cs, La, Mo, Nb, P, Pb, U, and Yb between PCa patients and healthy males. This work results reveal that in malignantly transformed prostate the chemical element metabolism is drastically disturbed.

References

Rebbeck TR, Haas GP. Temporal trends and racial disparities in global prostate cancer prevalence. Can J Urol 2014; 21: 7496-506.

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359-86. https://doi.org/10.1002/ijc.29210

Rebbeck TR. Conquering cancer disparities: new opportunities for cancer epidemiology, biomarker, and prevention research. Cancer Epidemiol Biomarkers Prev 2006; 15: 1569-71. https://doi.org/10.1158/1055-9965.EPI-06-0613

Aslam R, Neubauer S. Dairy foods, milk, calcium, and risk of prostate cancer. Oncol Nutr Connect 2013; 21: 3-10.

Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun M J. Cancer statistics, 2003. CA: A Cancer J Clin 2003; 53: 5-26. https://doi.org/10.3322/canjclin.53.1.5

Zaichick V. Medical elementology as a new scientific discipline. J Radioanal Nucl Chem 2006; 269: 303-9. https://doi.org/10.1007/s10967-006-0383-3

Ektessabi A, Shikine S, Kitamura N, Rokkum M, Johansson C. Distribution and chemical states of iron and chromium released from orthopedic implants into human tissues. X-Ray Spectrom 2001; 30: 44-8. https://doi.org/10.1002/xrs.466

Yoshida S, Ektessabi A, Fujisawa S. XAFS spectroscopy of a single neuron from a patient with Parkinson’s disease. J Synchrotron Radiat 2001; 8: 998-1000. https://doi.org/10.1107/S0909049500017726

Isaacs JT. Prostatic structure and function in relation to the etiology of prostatic cancer. Prostate 1983; 4(4): 351-66. https://doi.org/10.1002/pros.2990040405

Zaichick V, Zaichick S. Role of zinc in prostate cancerogenesis. In: Anke M, et al. editors. Mengen und Spurenelemente. 19. Arbeitstagung. Jena: Friedrich-Schiller-Universitat 1999; pp. 104-15.

Zaichick V. INAA and EDXRF applications in the age dynamics assessment of Zn content and distribution in the normal human prostate. J Radioanal Nucl Chem 2004; 262: 229-34. https://doi.org/10.1023/B:JRNC.0000040879.45030.4f

Zaichick V, Zaichick S. Age-related histological and zinc content changes in adult nonhyperplastic prostate glands. Age 2014; 36(1): 167-81. https://doi.org/10.1007/s11357-013-9561-8

Zaichick V, Zaichick S, Wynchank S. Intracellular zinc excess as one of the main factors in the etiology of prostate cancer. J Anal Oncol 2016; 5(3): 124-31. https://doi.org/10.6000/1927-7229.2016.05.03.5

Zaichick V, Zaichick S, Rossmann M. Intracellular calcium excess as one of the main factors in the etiology of prostate cancer. AIMS Mol Sci 2016; 3: 635-47. https://doi.org/10.3934/molsci.2016.4.635

Zaichick S, Zaichick V. Method and portable facility for energy-dispersive X-ray fluorescent analysis of zinc content in needle-biopsy specimens of prostate. X-Ray Spectrom 2010; 39: 83-9. https://doi.org/10.1002/xrs.1233

Zaichick S, Zaichick V. The Br, Fe, Rb, Sr, and Zn content and interrelation in intact and morphologic normal prostate tissue of adult men investigated by energy dispersive X-ray fluorescent analysis. X-Ray Spectrom 2011; 40: 464-9. https://doi.org/10.1002/xrs.1370

Zaichick S, Zaichick V. INAA application in the age dynamics assessment of Br, Ca, Cl, K, Mg, Mn, and Na content in the normal human prostate. J Radioanal Nucl Chem 2011; 288: 197-202. https://doi.org/10.1007/s10967-010-0927-4

Zaichick S, Zaichick V. The effect of age on Ag, Co, Cr, Fe, Hg, Sb, Sc, Se, and Zn contents in intact human prostate investigated by neutron activation analysis. Appl Radiat Isot 2011; 69: 827-33. https://doi.org/10.1016/j.apradiso.2011.02.010

Zaichick S, Zaichick V, Nosenko S, Moskvina I. Mass Fractions of 52 Trace Elements and Zinc Trace Element Content Ratios in Intact Human Prostates Investigated by Inductively Coupled Plasma Mass Spectrometry. Biol Trace Elem Res 2012; 149: 171-83. https://doi.org/10.1007/s12011-012-9427-4

Zaichick V, Nosenko S, Moskvina I. The effect of age on 12 chemical element contents in the intact prostate of adult men investigated by inductively coupled plasma atomic emission spectrometry. Biol Trace Elem Res 2012; 147: 49-58. https://doi.org/10.1007/s12011-011-9294-4

Zaichick V, Zaichick S. The effect of age on Br, Ca, Cl, K, Mg, Mn, and Na mass fraction in pediatric and young adult prostate glands investigated by neutron activation analysis. Appl Radiat Isot 2013; 82: 145-51. https://doi.org/10.1016/j.apradiso.2013.07.035

Zaichick V, Zaichick S. INAA application in the assessment of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn mass fraction in pediatric and young adult prostate glands. J Radioanal Nucl Chem 2013; 298: 1559-66. https://doi.org/10.1007/s10967-013-2554-3

Zaichick V, Zaichick S. NAA-SLR and ICP-AES Application in the Assessment of Mass Fraction of 19 Chemical Elements in Pediatric and Young Adult Prostate Glands. Biol Trace Elem Res 2013; 156: 357-66. https://doi.org/10.1007/s12011-013-9826-1

Zaichick V, Zaichick S. Use of Neutron Activation Analysis and Inductively Coupled Plasma Mass Spectrometry for the Determination of Trace Elements in Pediatric and Young Adult Prostate. AJAC 2013; 4: 696-706. https://doi.org/10.4236/ajac.2013.412084

Zaichick V, Zaichick S. The distribution of 54 trace elements including zinc in pediatric and nonhyperplastic young adult prostate gland tissues. Journal of Clinical and Laboratory Investigation Updates 2014; 2(1): 1-15. https://doi.org/10.14205/2310-9556.2014.02.01.1

Zaichick V, Zaichick S. INAA application in the assessment of chemical element mass fractions in adult and geriatric prostate glands. Appl Radiat Isot 2014; 90: 62-73. https://doi.org/10.1016/j.apradiso.2014.03.010

Zaichick V, Zaichick S. Determination of trace elements in adults and geriatric prostate combining neutron activation with inductively coupled plasma atomic emission spectrometry. Open Journal of Biochemistry 2014; 1(2): 16-33.

Zaichick V, Zaichick S. Use of INAA and ICP-MS for the assessment of trace element mass fractions in adult and geriatric prostate. J Radioanal Nucl Chem 2014; 301: 383-97. https://doi.org/10.1007/s10967-014-3173-3

Zaichick V. The variation with age of 67 macro- and microelement contents in nonhyperplastic prostate glands of adult and elderly males investigated by nuclear analytical and related methods. Biol Trace Elem Res 2015; 168: 44-56. https://doi.org/10.1007/s12011-015-0342-3

Zaichick S, Zaichick V. Relations of morphometric parameters to zinc content in paediatric and nonhyperplastic young adult prostate glands. Andrology 2013; 1: 139-46. https://doi.org/10.1111/j.2047-2927.2012.00005.x

Zaichick V, Zaichick S. Relations of Bromine, Iron, Rubidium, Strontium, and Zinc Content to Morphometric Parameters in Pediatric and Nonhyperplastic Young Adult Prostate Glands. Biol Trace Elem Res 2014; 157: 195-204. https://doi.org/10.1007/s12011-014-9890-1

Zaichick V, Zaichick S. Relations of the neutron activation analysis data to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Advances in Biomedical Science and Engineering 2014; 1: 26-42.

Zaichick V, Zaichick S. Relations of the Al, B, Ba, Br, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, and Zn mass fractions to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. BioMetals 2014; 27: 333-48. https://doi.org/10.1007/s10534-014-9716-9

Zaichick V, Zaichick S. The distribution of 54 trace elements including zinc in pediatric and nonhyperplastic young adult prostate gland tissues. J Clin Lab Investig Updates 2014; 2(1): 1-15. https://doi.org/10.14205/2310-9556.2014.02.01.1

Zaichick V, Zaichick S. Age-related histological and zinc content changes in adult nonhyperplastic prostate glands. Age 2014; 36:167-81. https://doi.org/10.1007/s11357-013-9561-8

Zaichick V, Zaichick S. Androgen-dependent chemical elements of prostate gland. Androl Gynecol: Curr Res 2014; 2(2).

Zaichick V, Zaichick S. Age-related Changes in Concentration and Histological Distribution of Br, Ca, Cl, K, Mg, Mn, and Na in Nonhyperplastic Prostate of Adults. EJBMSR 2016; 4(2): 31-48.

Zaichick V, Zaichick S. Variations in concentration and histological distribution of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn in nonhyperplastic prostate gland throughout adulthood. Jacobs Journal of Cell and Molecular Biology 2016; 2(1):011, 1-16.

Zaichick V, Zaichick S. Age-related Changes in Concentration and Histological Distribution of 18 Chemical Elements in Nonhyperplastic Prostate of Adults. WJPMR 2016; 2(4): 5-18.

Zaichick V, Zaichick S. Age-related changes in concentration and histological distribution of 54 trace elements in nonhyperplastic prostate of adults. Int Arch Urol Complic 2016; 2(2):019.

Zaichick V, Zaichick S. Variations in concentration and distribution of several androgen-dependent and -independent trace elements in nonhyperplastic prostate gland tissue throughout adulthood. J Androl Gynaecol 2016; 4(1): 1-10.

Tipton IH, Cook MJ. Trace elements in human tissue. Part II. Adult subjects from the United States. Health Phys 1963; 9: 103-45. https://doi.org/10.1097/00004032-196302000-00002

Tipton JH, Steiner RL, Foland WD, Mueller J, Stanley M. USAEC-ORNL-Report-CF-54-12-66; 1954.

Stitch SR. Trace elements in human tissue. I. A semi-quantitative spectrographic survey. Biochem J 1957; 67: 97-103. https://doi.org/10.1042/bj0670097

Jaritz M, Anke M, Holzinger S. Der Bariumgehalt verschiedener Organe von Feldhase, Wildschwein, Damhirsch, Reh, Rothirsch, Mufflon and Mensch. In: Anke M, et al. editors. Mengen- und Spurenelemente. 18. Arbeitstagung. Jena: Friedrich-Schiller-Universität 1998; p. 467-74.

Kubo H, Hashimoto S, Ishibashi A, Chiba R, Yokota H. Simultaneous determinations of Fe, Cu, Zn, and Br concentrations in human tissue sections. Med Phys 1976; 3: 204-9. https://doi.org/10.1118/1.594233

Schneider H-J, Anke M, Holm W. The inorganic components of testicle, epididymis, seminal vesicle, prostate and ejaculate of young men. Int Urol Nephrol 1970; 2: 419-27. https://doi.org/10.1007/BF02081698

Tohno S, Kobayashi M, Shimizu H, Tohno Y, Suwannahoy P, Azuma C, Minami T, Sinthubua A, Mahakkanukrauh P. Age-related changes of the concentrations of select elements in the prostates of Japanese. Biol Trace Elem Res 2009; 127: 211-27. https://doi.org/10.1007/s12011-008-8241-5

Schöpfer J, Drasch G, Schrauzer GN. Selenium and cadmium levels and ratios in prostates, livers, and kidneys of nonsmokers and smokers. Biol Trace Elem Res 2010; 134: 180-7. https://doi.org/10.1007/s12011-010-8636-y

Ogunlewe JO, Osegbe DN. Zinc and cadmium concentrations in indigenous blacks with normal, hypertrophic, and malignant prostate. Cancer 1989; 63: 1388-92. https://doi.org/10.1002/1097-0142(19890401)63:7<1388::AID-CNCR2820630725>3.0.CO;2-M

Banaś A, Kwiatek WM, Zając W. Trace element analysis of tissue section by means of synchrotron radiation: the use of GNUPLOT for SPIXE spectra analysis. J Alloys Compd 2001; 328: 135-8. https://doi.org/10.1016/S0925-8388(01)01334-2

Forssen A. Inorganic elements in the human body. I. occurrence of Ba, Br, Ca, Cd, Cs, Cu, K, Mn, Ni, Sn, Sr, Y and Zn in the human body. Ann Med Exp Biol Fenn (Finland) 1972; 50: 99-162.

Anspaugh LR, Robinson WL, Martin WH, Lowe OA. Compilation of Published Information on Elemental Concentrations in human Organs in Both Normal and Diseased States. No. UCRL-51013Pt. 1971-1973; 1973.

Jafa A, Mahendra NM, Chowdhury AR, Kamboj VP. Trace elements in prostatic tissue and plasma in prostatic diseases of man. Indian J Cancer 1980; 17: 34-7.

Sangen H. The influence of the trace metals upon the aconitase activity in human prostate glands. Jap J Urol 1967; 58: 1146-59.

Liebscher K, Smith H. Essential and nonessential trace elements. A method of determining whether an element is essential or nonessential in human tissue. Arch Environ Health 1968; 17: 882-91. https://doi.org/10.1080/00039896.1968.10665346

Guntupalli JNR, Padala S, Gummuluri AVRM, Muktineni RK, Byreddy SR, Sreerama L, Kedarisetti PC, Angalakuduru DP, Satti BR, Venkatathri V, Pullela VBRL, Gavarasana S. Trace elemental analysis of normal, benign, hypertrophic and cancerous tissues of the prostate gland using the particle-induced X-ray emission technique. Eur J Cancer Prev 2007; 16: 108-15. https://doi.org/10.1097/01.cej.0000228409.75976.b6

Soman SD, Joseph KT, Raut SJ, Mulay GD, Parameswaran M, Pandey VK. Studies of major and trace element content in human tissues. Health Phys 1970; 19: 641-56. https://doi.org/10.1097/00004032-197011000-00006

Koch HJ, Smith ER, Shimp NF, Connor J. Analysis of trace elements in tissue. I. Normal tissue. Cancer 1956; 9: 499-511. https://doi.org/10.1002/1097-0142(195605/06)9:3<499::AID-CNCR2820090311>3.0.CO;2-1

Oldereid NB, Thomassen Y, Attramadal A, Olaisen B, Purvis K. Concentrations of lead, cadmium and zinc in the tissues of reproductive organs of men. J Reprod Fertil 1993; 99: 421-5. https://doi.org/10.1530/jrf.0.0990421

Belt TH, Irwin D, King EJ. Silicosis and dust deposits in the tissues of person without occupational exposure to siliceous dusts. Canad Med Assoc 1936; J 34: 125-33.

Höffken B, Rausch-Stroomann JG. Excretion of zinc in diabetics receiving penicillamine. Z Klin Chem Klin Biochem 1969; 7: 4-7.

Galván-Bobadilla AI, García–Escamilla RM, Gutiérrez-García N, Mendoza-Magaña ML, Rosiles-Martínez R. Cadmium and zinc concentrations in prostate cancer and benign prostate hyperplasia. Rev Latinoamer Patol Clin 2005; 52: 109-17.

Eckhert CD. Microlocalization and Quantitation of Risk Associated Elements in Gleason Graded Prostate Tissue. Annual Report (1 Mar 2004 - 28 Feb 2005) NSN 7540-01-280-5500. Los Angeles, CA 90024: University of California 2005.

Leitão RG, Palumbo A, Souza PAVR, Pereira GR, Canellas CGL, Anjos MJ, Nasciutti LE. Elemental concentration analysis in prostate tissues using total reflection X-ray fluorescence. Radiat Phys Chem 2014; 95: 62-4. https://doi.org/10.1016/j.radphyschem.2012.12.044

Paluszkiewicz C, Kwiatek W. Analysis of human cancer prostate tissue using FTIR microspectroscopy and SRIXE techniques. J Mol Struct 2001; 565-566: 329-34. https://doi.org/10.1016/S0022-2860(01)00527-0

Neslund-Dudas C, Kandegedara A, Kryvenko ON, Gupta N, Rogers C, Rybicki BA, Ping Dou Q, Mitra B. Prostate tissue metal levels and prostate cancer recurrence in smokers. Biol Trace Elem Res 2014; 157: 107-12. https://doi.org/10.1007/s12011-013-9874-6

Kwiatek WM, Banas A, Gajda M, Gałka M, Pawlicki B, Falkenberg G, Cichocki T. Cancerous tissues analyzed by SRIXE. J Alloys Compd 2005; 401: 173-7. https://doi.org/10.1016/j.jallcom.2005.02.070

Yaman M, Atici D, Bakirdere S, Akdeniz I. Comparison of trace metal concentrations in malignant and benign human prostate. J Med Chem 2005; 48: 630-4. https://doi.org/10.1021/jm0494568

Kiziler AR, Aydemir B, Guzel S, Alici B, Ataus S, Tuna MB, Durak H, Kilic M. May the level and ratio changes of trace elements be utilized in identification of disease progression and grade in prostatic cancer? Trace Elements and Electrolytes 2010; 27: 65-72. https://doi.org/10.5414/TEP27065

Picurelli L, Olcina PV, Roig MD, Ferrer J. Determination of Fe, Mg, Cu, and Zn in normal and pathological prostatic tissue. Actas Urol Esp 1991; 15: 344-50.

Kwiatek WM, Hanson AL, Paluszkiewicz C, Gałka M, Gajda M, Cichocki T. Application of SRIXE and XANES to the determination of the oxidation state of iron in prostate tissue sections. J Alloys Compd 2004; 362: 83-7. https://doi.org/10.1016/S0925-8388(03)00566-8

Hienzsch E, Schneider H-J, Anke M. Vergleichende Untersuchungen zum Mengen- und Spurenelementgehalt der normalen Prostata, des Prostataadenoms und des Prostatakarzinoms. Z Urol Nephrol 1991; 63: 543-6.

Marezynska A, Kulpa J, Lenko J. The Concentration of zimc in relation to fundamental elements in the diseases human prostate. Int Urol Nephrol 1983; 15: 257-65. https://doi.org/10.1007/BF02083012

Guzel S, Kiziler L, Aydemir B, Alici B, Ataus S, Aksu A, Durak H. Association of Pb, Cd, and Se concentrations and oxidative damage-related markers in different grades of prostate carcinoma. Biol Trace Elem Res 2012; 145: 23-32. https://doi.org/10.1007/s12011-011-9162-2

Muecke R, Klotz T, Giedl J, Buentzel J, Kundt G, Kisters K, Prott FJ, Micke O. Whole blood selenium levels (WBSL) in patients with prostate cancer (PC), benign prostatic hyperplasia (BPH) and healthy male inhabitants (HMI) and prostatic tissue selenium levels (PTSL) in patients with PC and BPH. Acta Oncol 2009; 48: 452-6. https://doi.org/10.1080/02841860802403721

Kwiatek WM, Kubica B, Paluszkiewicz C, Gałka M. Trace element analysis by means of synchrotron radiation, XRF, and PIXE: selection of sample preparation procedure. J Alloys Compd 2001; 328: 283-8. https://doi.org/10.1016/S0925-8388(01)01318-4

Dhar NK, Goel TC, Dube PC, Chowdhury AR, Kar AB. Distribution and concentration of zinc in the subcellular fractions of benign hyperplastic and malignant neoplastic human prostate. Exp Mol Pathol 1973; 19: 139-42. https://doi.org/10.1016/0014-4800(73)90073-7

Fuente MA, Juаrez M. Determination of phosphorus in dairy products by sample wet digestion in a microwave oven. Anal Chim Acta 1995; 309: 355-9. https://doi.org/10.1016/0003-2670(95)00059-9

Zachariadis GA, Stratis JA, Kaniou I, Kalligas G. Critical comparison of wet and dry digestion procedures for trace elements analysis of meat and fish tissues. Microchim Acta 1995; 119: 191-8. https://doi.org/10.1007/BF01243998

Zaichick V. Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health. In: Harmonization of Health-Related Environmental Measurements Using Nuclear and Isotopic Techniques. Vienna: IAEA 1997; p. 123-33.

Zaichick V, Zaichick S. A search for losses of chemical elements during freeze-drying of biological materials. J Radioanal Nucl Chem 1997; 218: 249-53. https://doi.org/10.1007/BF02039345

Zaichick V. Losses of chemical elements in biological samples under the dry ashing process. Trace Elements in Medicine (Moscow) 2004; 5: 17-22.

Khan N, Jeong IS, Hwang IM, Kim JS, Choi SH, Nho EY, Kim KS. Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS. Food Chem 2013; 141: 3566-70. https://doi.org/10.1016/j.foodchem.2013.06.034

Korelo AM, Zaichick V. Software to optimize the multielement INAA of medical and environmental samples. In: Activation Analysis in Environment Protection. Dubna (Russia): Join Institute of Nuclear Research 1993; pp. 326-32.

Woodard HQ, White DR. The composition of body tissues. Br J Radiol 1986; 59: 1209-18. https://doi.org/10.1259/0007-1285-59-708-1209

Saltzman BE, Gross SB, Yeager DW, Meiners BG, Gartside PS. Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ash in 55 human cadavers. Environ Res 1990; 52: 126-45. https://doi.org/10.1016/S0013-9351(05)80248-8

Györkey F, Min K-W, Huff JA, Györkey P. Zinc and magnesium in human prostate gland: Normal, hyperplastic, and neoplastic. Cancer Res 1967; 27(8 Pt 1): 1349-53.

Sapota A, Daragó A, Taczalski J, Kilanowicz A. Disturbed homeostasis of zinc and other essential elements in the prostate gland dependent on the character of pathological lesions. BioMetals 2009; 22: 1041-9. https://doi.org/10.1007/s10534-009-9255-y

Anghileri LJ, Plenat F, Labouyrie E, Thouvenot P. Iron- and aluminum-induced carcinogenesis. Anticancer Res 2000; 20(5A): 3007-12.

Gordon T, Bowser D. Beryllium: genotoxicity and carcinogenicity. Mutat Res 2003; 533: 99-105. https://doi.org/10.1016/j.mrfmmm.2003.08.022

Crespo-López ME, Macêdo GL, Pereira SI, Arrifano GP, Picanço-Diniz DL, do Nascimento JL, Herculano AM. Mercury and human genotoxicity: critical considerations and possible molecular mechanisms. Pharmacol Res 2009; 60: 212-20. https://doi.org/10.1016/j.phrs.2009.02.011

Bian L, He YW, Tang RZ, Ma LJ, Wang CY, Ruan YH, Gao Q, Jin KW. Induction of lung epithelial cell transformation and fibroblast activation by Yunnan tin mine dust and their interaction. Med Oncol 2011; 28(Suppl 1): S560-9. https://doi.org/10.1007/s12032-010-9655-4

Müezzinoğlu T, Korkmaz M, Neşe N, Bakırdere S, Arslan Y, Ataman OY, Lekili M. Prevalence of prostate cancer in high boron-exposed population: a community-based study. Biol Trace Elem Res 2011; 144: 49-57. https://doi.org/10.1007/s12011-011-9023-z

Sappino AP, Buser R, Lesne L, Gimelli S, Béna F, Belin D, Mandriota SJ. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells. J Appl Toxicol 2012; 32: 233-43. https://doi.org/10.1002/jat.1793

Adámik M, Bažantová P, Navrátilová L, Polášková A, Pečinka P, Holaňová L, Tichý V, Brázdová M. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells. Biochem Biophys Res Commun 2015; 456: 29-34. https://doi.org/10.1016/j.bbrc.2014.11.027

Farasani A, Darbre PD. Effects of aluminium chloride and aluminum chlorohydrate on DNA repair in MCF10A immortalised non-transformed human breast epithelial cells. J Inorg Biochem 2015; 152: 186-9. https://doi.org/10.1016/j.jinorgbio.2015.08.003

Sunderman FW. Mechanism of metal carcinogenesis. Biol Trace Elem Res 1979; 1: 63-86. https://doi.org/10.1007/BF02783844

Snow ET. Metal carcinogenesis: mechanistic implications. Pharmacol Ther 1992; 53: 31-65. https://doi.org/10.1016/0163-7258(92)90043-Y

Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 2008; 21: 28-44. https://doi.org/10.1021/tx700198a

Toyokuni S. Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 2009; 100: 9-16. https://doi.org/10.1111/j.1349-7006.2008.01001.x

Tokar EJ, Benbrahim-Tallaa L, Waalkes MP. Metal ions in human cancer development. Met Ions Life Sci 2011; 8: 375-401.

Martinez-Zamudio R, Ha HC. Environmental epigenetics in metal exposure. Epigenetics 2011; 6: 820-7. https://doi.org/10.4161/epi.6.7.16250

Chervona Y, Arita A, Costa M. Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 2012; 4: 619-27. https://doi.org/10.1039/c2mt20033c

Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology 2012; 101: 133-64. https://doi.org/10.1007/978-3-7643-8340-4_6

Koedrith P, Kim H, Weon JI, Seo YR. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health 2013; 216: 587-98. https://doi.org/10.1016/j.ijheh.2013.02.010

Tabrez S, Priyadarshini M, Priyamvada S, Khan MS, Na A, Zaidi SK. Gene–environment interactions in heavy metal and pesticide carcinogenesis. Mutat Res 2014; 760: 1-9. https://doi.org/10.1016/j.mrgentox.2013.11.002

Downloads

Published

2017-12-28

How to Cite

Vladimir Zaichick. (2017). Differences between 66 Chemical Element Contents in Normal and Cancerous Prostate. Journal of Analytical Oncology, 6(2),  37–56. https://doi.org/10.6000/1927-7229.2017.06.02.1

Issue

Section

Articles