Extracellular HSP90 in Cancer Invasion and Metastasis: From Translational Research to Clinical Prospects


  • Dimitra Thomaidou Department of Neurobiology, Hellenic Pasteur Institute, Athens 11521,Greece
  • Evangelia Patsavoudi Department of Neurobiology, Hellenic Pasteur Institute, Athens 11521,Greece




Cancer therapeutics, wound healing, cell impermeable antibodies, signal transduction, pro-motility factors, extracellular.


 During the last decade, the extracellular molecular chaperone HSP90 (eHSP90) has been identified as a critical effector in cancer cell invasion and metastasis by virtue of its interaction with a diverse cohort of molecules that serve as key nodal points in oncogenic pathways. Thus eHSP90 has most recently emerged as a novel target in cancer therapeutics, subsequently becoming the focus of several drug development efforts. This review highlights recent studies on the mechanisms through which eHSP90 exhibits its tumor cell invasion action. It also presents latest efforts to translate this cumulative knowledge into clinical practice to disable eHSP90-driven metastasis.


Buchner J. Hsp90 & Co. - a holding for folding. Trends Biochem Sci 1999; 24(4): 136-41. http://dx.doi.org/10.1016/S0968-0004(99)01373-0

Pearl LH, C. Prodromou, Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 2006; 75: 271-94. http://dx.doi.org/10.1146/annurev.biochem.75.103004.142738

Chen B, et al. The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 2005; 86(6): 627-37. http://dx.doi.org/10.1016/j.ygeno.2005.08.012

Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005; 5(10): 761-72. http://dx.doi.org/10.1038/nrc1716

Eustace BK, et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 2004; 6(6): 507-14. http://dx.doi.org/10.1038/ncb1131

Sidera K, et al. Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem 2004; 279(44): 45379-88. http://dx.doi.org/10.1074/jbc.M405486200

Stellas DA. Karameris, and E. Patsavoudi, Monoclonal antibody 4C5 immunostains human melanomas and inhibits melanoma cell invasion and metastasis. Clin Cancer Res 2007; 13(6): 1831-8. http://dx.doi.org/10.1158/1078-0432.CCR-06-1585

Tsutsumi S, Neckers L. Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci 2007; 98(10): 1536-9. http://dx.doi.org/10.1111/j.1349-7006.2007.00561.x

Li W, et al. Extracellular heat shock protein-90alpha: linking hypoxia to skin cell motility and wound healing. EMBO J 2007; 26(5): 1221-33. http://dx.doi.org/10.1038/sj.emboj.7601579

Tsutsumi S, et al. A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 2008; 27(17): 2478-87. http://dx.doi.org/10.1038/sj.onc.1210897

Wang X, et al. The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy. Proc Natl Acad Sci USA 2009; 106(50): 21288-93. http://dx.doi.org/10.1073/pnas.0908151106

Bausero MA, et al. Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumour Biol 2004; 25(5-6): 243-51. http://dx.doi.org/10.1159/000081387

El Hamidieh A, Grammatikakis N, Patsavoudi E. Cell surface Cdc37 participates in extracellular HSP90 mediated cancer cell invasion. PLoS One 2012; 7(8): e42722. http://dx.doi.org/10.1371/journal.pone.0042722

Farkas B, et al. Heat shock protein 70 membrane expression and melanoma-associated marker phenotype in primary and metastatic melanoma. Melanoma Res 2003; 13(2): 147-52. http://dx.doi.org/10.1097/00008390-200304000-00006

Lee KJ, et al. Release of heat shock protein 70 (Hsp70) and the effects of extracellular Hsp70 on matric metalloproteinase-9 expression in human monocytic U937 cells. Exp Mol Med 2006; 38(4): 364-74. http://dx.doi.org/10.1038/emm.2006.43

Sidera K, et al. A critical role for HSP90 in cancer cell invasion involves interaction with the extracellular domain of HER-2. J Biol Chem. 2008; 283(4): 2031-41. Epub 2007 Dec 5. http://dx.doi.org/10.1074/jbc.M701803200

Sims JD, McCready J, Jay DG. Extracellular heat shock protein (Hsp)70 and Hsp90alpha assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One 2011; 6(4): e18848.

Li C, et al. Induction of heat shock protein 70 (Hsp70) prevents neuregulin-induced demyelination by enhancing the proteasomal clearance of c-Jun. ASN Neuro 2012; 4(7): e00102.

Olivotto M, Dello Sbarba P. Environmental restrictions within tumor ecosystems select for a convergent, hypoxia-resistant phenotype of cancer stem cells. Cell Cycle 2008; 7(2): 176-87. http://dx.doi.org/10.4161/cc.7.2.5315

Smith JR, Workman P. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Cell Cycle 2009; 8(3): 362-72. http://dx.doi.org/10.4161/cc.8.3.7531

Pearl LH. Hsp90 and Cdc37 -- a chaperone cancer conspiracy. Curr Opin Genet Dev 2005; 15(1): 55-61. http://dx.doi.org/10.1016/j.gde.2004.12.011

Silverstein AM, et al. p50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site. J Biol Chem 1998; 273(32): 20090-5. http://dx.doi.org/10.1074/jbc.273.32.20090

Hartson SD, et al. p50(cdc37) is a nonexclusive Hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules. Biochemistry 2000; 39(25): 7631-44. http://dx.doi.org/10.1021/bi000315r

Thomaidou D, Yfanti E, Patsavoudi E. Expression of the 4C5 antigen during development and after injury of the rat sciatic nerve. J Neurosci Res 1996; 46(1): 24-33. http://dx.doi.org/10.1002/(SICI)1097-4547(19961001)46:1<24::AID-JNR4>3.0.CO;2-H

Yfanti E, et al. The 4C5 antigen is associated with Schwann cell migration during development and regeneration of the rat peripheral nervous system. Glia 2004; 45(1): 39-53. http://dx.doi.org/10.1002/glia.10307

Basu A, et al. Modulation of CD11C+ splenic dendritic cell functions in murine visceral leishmaniasis: correlation with parasite replication in the spleen. Immunology 2000; 99(2): 305-13. http://dx.doi.org/10.1046/j.1365-2567.2000.00939.x

Yu X, Harris SL, Levine AJ. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 2006; 66(9): 4795-801. http://dx.doi.org/10.1158/0008-5472.CAN-05-4579

Liao DF, et al. Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem 2000; 275(1): 189-96. http://dx.doi.org/10.1074/jbc.275.1.189

Lv LH, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 2012; 287(19): 15874-85. http://dx.doi.org/10.1074/jbc.M112.340588

Cheng CF, et al. Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing. Mol Cell Biol 2008; 28(10): 3344-58. http://dx.doi.org/10.1128/MCB.01287-07

Clayton A, et al. Induction of heat shock proteins in B-cell exosomes. J Cell Sci 2005; 118(Pt 16): 3631-8. http://dx.doi.org/10.1242/jcs.02494

Ramteke A, et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog 2015; 54(7): 554-65. http://dx.doi.org/10.1002/mc.22124

Li W, Sahu D, Tsen F. Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 2012; 1823(3): 730-41. http://dx.doi.org/10.1016/j.bbamcr.2011.09.009

Becker B, et al. Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp Dermatol 2004; 13(1): 27-32. http://dx.doi.org/10.1111/j.0906-6705.2004.00114.x

Song X, et al. The regulatory mechanism of extracellular Hsp90{alpha} on matrix metalloproteinase-2 processing and tumor angiogenesis. J Biol Chem 2010; 285(51): 40039-49. http://dx.doi.org/10.1074/jbc.M110.181941

Defee MR, et al. Extracellular Hsp90 serves as a co-factor for NF-kappaB activation and cellular pathogenesis induced by an oncogenic herpesvirus. Am J Cancer Res 2011; 1(5): 687-700.

Sahu D, et al. A potentially common peptide target in secreted heat shock protein-90alpha for hypoxia-inducible factor-1alpha-positive tumors. Mol Biol Cell 2012; 23(4): 602-13. http://dx.doi.org/10.1091/mbc.E11-06-0575

Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 2007; 12(19-20): 853-9. http://dx.doi.org/10.1016/j.drudis.2007.08.006

Dales JP, et al. Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. Int J Cancer 2005; 116(5): 734-9. http://dx.doi.org/10.1002/ijc.20984

Burgess EF, et al. Prostate cancer serum biomarker discovery through proteomic analysis of alpha-2 macroglobulin protein complexes. Proteomics Clin Appl 2008; 2(9): 1223. http://dx.doi.org/10.1002/prca.200780073

Luo LY, et al. Identification of heat shock protein 90 and other proteins as tumour antigens by serological screening of an ovarian carcinoma expression library. Br J Cancer 2002; 87(3): 339-43. http://dx.doi.org/10.1038/sj.bjc.6600439

Conroy SE, et al. Autoantibodies to the 90kDa heat shock protein and poor survival in breast cancer patients. Eur J Cancer 1998; 34(6): 942-3.

Trieb K, et al. Antibodies to heat shock protein 90 in osteosarcoma patients correlate with response to neoadjuvant chemotherapy. Br J Cancer 2000; 82(1): 85-7. http://dx.doi.org/10.1054/bjoc.1999.0881

Rabbani SA, Mazar AP. Evaluating distant metastases in breast cancer: from biology to outcomes. Cancer Metastasis Rev 2007; 26(3-4): 663-74. http://dx.doi.org/10.1007/s10555-007-9085-8

Lopez-Otin C, Overall CM. Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 2002; 3(7): 509-19. http://dx.doi.org/10.1038/nrm858

Curran S, Murray GI. Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 1999; 189(3): 300-8. http://dx.doi.org/10.1002/(SICI)1096-9896(199911)189:3<300::AID-PATH456>3.0.CO;2-C

Hamano Y, et al. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 2003; 3(6): 589-601. http://dx.doi.org/10.1016/S1535-6108(03)00133-8

Itoh Y, et al. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J 2001; 20(17): 4782-93. http://dx.doi.org/10.1093/emboj/20.17.4782

Galis ZS, et al. Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res 2002; 91(9): 852-9. http://dx.doi.org/10.1161/01.RES.0000041036.86977.14

Zuo JH, et al. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degrada-tion of E-cadherin. J Cell Biochem 2011; 112(9): 2508-17. http://dx.doi.org/10.1002/jcb.23175

Stellas D, El Hamidieh A, Patsavoudi E. Monoclonal antibody 4C5 prevents activation of MMP2 and MMP9 by disrupting their interaction with extracellular HSP90 and inhibits formation of metastatic breast cancer cell deposits. BMC Cell Biol 2010; 11: 51. http://dx.doi.org/10.1186/1471-2121-11-51

Correia AL, et al. The hemopexin domain of MMP3 is responsible for mammary epithelial invasion and morphogenesis through extracellular interaction with HSP90beta. Genes Dev 2013; 27(7): 805-17. http://dx.doi.org/10.1101/gad.211383.112

Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 2004; 101(36): 13368-73. http://dx.doi.org/10.1073/pnas.0403453101

Thery C, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 2001; 166(12): 7309-18. http://dx.doi.org/10.4049/jimmunol.166.12.7309

Lei H, et al. Protein kinase A-dependent translocation of Hsp90 alpha impairs endothelial nitric-oxide synthase activity in high glucose and diabetes. J Biol Chem 2007; 282(13): 9364-71. http://dx.doi.org/10.1074/jbc.M608985200

Hegmans JP, et al. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol 2004; 164(5): 1807-15. http://dx.doi.org/10.1016/S0002-9440(10)63739-X

Sharma MR, et al. Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol 2006; 81(2): 146-56. http://dx.doi.org/10.1016/j.yexmp.2006.03.003

McCready J, et al. Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer 2010; 10: 294. http://dx.doi.org/10.1186/1471-2407-10-294

Peinado H, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18(6): 883-91. http://dx.doi.org/10.1038/nm.2753

Hong H, et al. Pigment epithelium-derived factor (PEDF) inhibits breast cancer metastasis by down-regulating fibronectin. Breast Cancer Res Treat 2014; 148(1): 61-72. http://dx.doi.org/10.1007/s10549-014-3154-9

Hunter MC, et al. Hsp90 binds directly to fibronectin (FN) and inhibition reduces the extracellular fibronectin matrix in breast cancer cells. PLoS One. 2014; 9(1): e86842. doi: 10.1371/journal.pone.0086842. eCollection 2014. http://dx.doi.org/10.1371/journal.pone.0086842

Ioachim E, et al. Expression of cathepsin D in urothelial carcinoma of the urinary bladder: an immunohistochemical study including correlations with extracellular matrix components, CD44, p53, Rb, c-erbB-2 and the proliferation indices. Anticancer Res 2002; 22(6A): 3383-8.

Bae YK, et al. Fibronectin expression in carcinoma cells correlates with tumor aggressiveness and poor clinical outcome in patients with invasive breast cancer. Hum Pathol. 2013; 44(10): 2028-37. http://dx.doi.org/10.1016/j.humpath.2013.03.006

Adinolfi E, et al. Tyrosine phosphorylation of HSP90 within the P2X7 receptor complex negatively regulates P2X7 receptors. J Biol Chem 2003; 278(39): 37344-51. http://dx.doi.org/10.1074/jbc.M301508200

Wandinger SK, et al. The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. EMBO J 2006; 25(2): 367-76. http://dx.doi.org/10.1038/sj.emboj.7600930

Bali P, et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 2005; 280(29): 26729-34. http://dx.doi.org/10.1074/jbc.C500186200

Martinez-Ruiz A, et al. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A 2005; 102(24): 8525-30. http://dx.doi.org/10.1073/pnas.0407294102

Yang Y, et al. Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res 2008; 68(12): 4833-42. http://dx.doi.org/10.1158/0008-5472.CAN-08-0644

Yang Y, et al. Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res. 2008; 68(12): 4833-42. doi: 10.1158/0008-5472.CAN-08-0644. http://dx.doi.org/10.1158/0008-5472.CAN-08-0644

Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000; 103(2): 295-309. http://dx.doi.org/10.1016/S0092-8674(00)00121-5

Moses HL, Serra R. Regulation of differentiation by TGF-beta. Curr Opin Genet Dev 1996; 6(5): 581-6. http://dx.doi.org/10.1016/S0959-437X(96)80087-6

Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 2002; 118(2): 211-5. http://dx.doi.org/10.1046/j.1523-1747.2002.01641.x

Franchi A, et al. Expression of transforming growth factor beta isoforms in osteosarcoma variants: association of TGF beta 1 with high-grade osteosarcomas. J Pathol 1998; 185(3): 284-9. http://dx.doi.org/10.1002/(SICI)1096-9896(199807)185:3<284::AID-PATH94>3.0.CO;2-Z

Kloen P, et al. Expression of transforming growth factor-beta (TGF-beta) isoforms in osteosarcomas: TGF-beta3 is related to disease progression. Cancer 1997; 80(12): 2230-9. http://dx.doi.org/10.1002/(SICI)1097-0142(19971215)80:12<2230::AID-CNCR3>3.0.CO;2-Y

Suzuki S, Kulkarni AB. Extracellular heat shock protein HSP90beta secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-beta1. Biochem Biophys Res Commun 2010; 398(3): 525-31. http://dx.doi.org/10.1016/j.bbrc.2010.06.112

Citri A, Skaria KB, Yarden Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 2003; 284(1): 54-65. http://dx.doi.org/10.1016/S0014-4827(02)00101-5

Tzahar E, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996; 16(10): 5276-87. http://dx.doi.org/10.1128/MCB.16.10.5276

Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2(2): 127-37. http://dx.doi.org/10.1038/35052073

Muss HB, et al. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 1994; 330(18): 1260-6. http://dx.doi.org/10.1056/NEJM199405053301802

Slamon DJ, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244(4905): 707-12. http://dx.doi.org/10.1126/science.2470152

Mimnaugh EG, Chavany C, Neckers L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 1996; 271(37): 22796-801. http://dx.doi.org/10.1074/jbc.271.37.22796

Xu W, et al. Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 2001; 276(5): 3702-8. Epub 2000 Nov 8. http://dx.doi.org/10.1074/jbc.M006864200

Citri A, Kochupurakkal BS, Yarden Y. The achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle 2004; 3(1): 51-60. http://dx.doi.org/10.4161/cc.3.1.607

Garrett TP, et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 2003; 11(2): 495-505. http://dx.doi.org/10.1016/S1097-2765(03)00048-0

Roskoski R Jr. The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun 2004; 319(1): 1-11. http://dx.doi.org/10.1016/j.bbrc.2004.04.150

Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J 2010; 277(2): 301-8. http://dx.doi.org/10.1111/j.1742-4658.2009.07448.x

Douziech N, et al. Inhibitory and stimulatory effects of somatostatin on two human pancreatic cancer cell lines: a primary role for tyrosine phosphatase SHP-1. Endocrinology 1999; 140(2): 765-77.

Mendelsohn J. Blockade of receptors for growth factors: an anticancer therapy--the fourth annual Joseph H Burchenal American Association of Cancer Research Clinical Research Award Lecture. Clin Cancer Res 2000; 6(3): 747-53.

Sasaki T, Hiroki K, Yamashita Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res Int 2013; 2013: 546318. http://dx.doi.org/10.1155/2013/546318

Lillis AP, et al. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 2008; 88(3): 887-918. http://dx.doi.org/10.1152/physrev.00033.2007

Gopal U, et al. A novel extracellular Hsp90 mediated co-receptor function for LRP1 regulates EphA2 dependent glioblastoma cell invasion. PLoS One 2011; 6(3): e17649. http://dx.doi.org/10.1371/journal.pone.0017649

Thiery JP, et al. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871-90. http://dx.doi.org/10.1016/j.cell.2009.11.007

Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9(4): 265-73. http://dx.doi.org/10.1038/nrc2620

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74. http://dx.doi.org/10.1016/j.cell.2011.02.013

Onder TT, et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68(10): 3645-54. http://dx.doi.org/10.1158/0008-5472.CAN-07-2938

Hance MW, et al. Secreted Hsp90 is a novel regulator of the epithelial to mesenchymal transition (EMT) in prostate cancer. J Biol Chem 2012; 287(45): 37732-44. http://dx.doi.org/10.1074/jbc.M112.389015

Cano A, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2(2): 76-83. http://dx.doi.org/10.1038/35000025

Grooteclaes ML, Frisch SM. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 2000; 19(33): 3823-8. http://dx.doi.org/10.1038/sj.onc.1203721

McCready J, et al. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein. Cancers (Basel) 2014; 6(2): 1031-46. http://dx.doi.org/10.3390/cancers6021031

Modi S, et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 2011; 17(15): 5132-9. http://dx.doi.org/10.1158/1078-0432.CCR-11-0072

Jay DG, Eustace BK, Sakurai T. Inhibitors of extracellular HSP90. US20110150881 (2011).

Udono H, Mizukami S. Novel anti-HSP90 monoclonal antibody. WO2011129379 (2011).

Sidera K, Mamalaki A, Patsavoudi E. Compositions and methods for treating neoplasia. WO2012041863 (2012).




How to Cite

Dimitra Thomaidou, & Evangelia Patsavoudi. (2015). Extracellular HSP90 in Cancer Invasion and Metastasis: From Translational Research to Clinical Prospects. Journal of Analytical Oncology, 4(4),  178–190. https://doi.org/10.6000/1927-7229.2015.04.04.7