Cancer Stem-Cell Related miRNAs: Novel Potential Targets for Metastatic Prostate Cancer


  • Anshika N. Singh Symbiosis School of Biomedical Sciences, Symbiosis International University, Gram- Lavale, Taluka- Mulshi, Pune, India
  • Anand P. Khandwekar Symbiosis School of Biomedical Sciences, Symbiosis International University, Gram- Lavale, Taluka- Mulshi, Pune, India
  • Neeti Sharma Symbiosis School of Biomedical Sciences, Symbiosis International University, Gram- Lavale, Taluka- Mulshi, Pune, India



Cancer stem cells, Epithelial to Mesenchymal Transition, Metastasis, MicroRNA.


 Globally Prostate Cancer is the second most commonly diagnosed and sixth leading cause of Cancer mortalities in men worldwide but currently there is no cure for metastatic castration-resistant prostate cancer (CRPC). Chemoresistance and metastasis are the main causes of treatment resistance and mortality in Prostate Cancer patients. Although several advances have been made to control yet there is an urgent need to investigate the mechanisms and pathways for chemoresistance and prostate cancer (PCa) metastasis. Cancer stem cells (CSCs), a sub-population of cancer cells characterised by self-renewal and tumor initiation, have gained intense attention as they not only play a crucial role in cancer relapse but also contribute substantially to chemoresistance. Contributing to the role of CSCs are the miRNAs which are known key regulators of the posttranscriptional regulation of genes involved in a wide array of biological processes including tumorigenesis. The altered expressions of miRNAs have been associated with not only with tumor development but also with invasion, angiogenesis, drug resistance, and metastasis. Thus identification of signature miRNA associated with EMT and CSCs would provide a novel therapeutic strategy for the improvement of current treatment thus leading to increase in patient survival.


Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal, A. Global Cancer statistics, 2012. CA: a Cancer Journal for Clinicians 2015; 65(2): 87-108.

Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. European Journal of Cancer 2013; 49(6): 1374-1403.

Lopez-Camarillo C, Marchat LA, Arechaga-Ocampo E, et al. MetastamiRs: non-coding microRNAs driving cancer invasion and metastasis. International Journal of Molecular Sciences 2012; 13(2): 1347-1379.

Bailey JM, Singh PK, Hollingsworth MA. Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. Journal of Cellular Biochemistry 2007; 102(4): 829-839.

Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harbor Perspectives in Biology 2010; 2(2): a002915.

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology 2014; 15(3): 178-196.

Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871-890.

Kiesslich T, Pichler M, Neureiter D. Epigenetic control of epithelial-mesenchymal-transition in human Cancer (Review). Molecular and Clinical Oncology 2013; 1(1): 3-11.

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation 2009; 119(6): 1420.

Choi SS, Diehl AM. Epithelial‐to‐mesenchymal transitions in the liver. Hepatology 2009; 50(6): 2007-2013.

Cavallaro U, Schaffhauser B, Christofori G. Cadherins and the tumour progression: is it all in a switch? Cancer Letters 2002; 176(2): 123-128.

Maeda M, Johnson KR, Wheelock MJ. Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. Journal of Cell Science 2005; 118(5): 873-887.

Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology 2006; 7(2): 131-142.

Voulgari A, Pintzas A. Epithelial-mesenchymal transition in Cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2009; 1796(2): 75-90.

McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, Dinney C. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder Cancer. Cancer and Metastasis Reviews 2009; 28(3-4): 335-344.

Ouyang G, Wang Z, Fang X, Liu J, Yang CJ. Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining Cancer stem cells. Cellular and Molecular Life Sciences 2010; 67(15): 2605-2618.

Wu X, Chen H, Wang X. Can lung cancer stem cells be targeted for therapies? Cancer Treatment Reviews 2012; 38(6): 580-588.

Dou J, Gu N. Emerging strategies for the identification and targeting of cancer stem cells. Tumor Biology 2010; 31(4): 243-253.

Sell S. Stem cell origin of cancer and differentiation therapy. Critical Reviews in Oncology/Hematology 2004; 51(1): 1-28.

Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Research 2006; 66(4): 1883-1890.

Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nature Reviews Cancer 2005; 5(4): 311-321.

Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Wahl GM. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research 2006; 66(19): 9339-9344.

Dick DBJE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med 1997; 3: 730-737.

O'Brien CA, Kreso A, Dick JE. Cancer stem cells in solid tumors: an overview. In Seminars in Radiation Oncology 2009; 19(2): 71-77.

Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-111.

Jordan CT, Guzman ML, Noble M. Cancer stem cells. New England Journal of Medicine 2006; 355(12): 1253-1261.

Moore KA, Lemischka IR. Stem cells and their niches. Science 2006; 311(5769): 1880-1885.

Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research 2004; 6(6): R605-R615.

Lowe SW, Sherr CJ. Tumor suppression by Ink4a-Arf: progress and puzzles. Current Opinion in Genetics & Development 2003; 13(1): 77-83.

Lindvall C, Bu W, Williams BO, Li Y. Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Reviews 2007; 3(2): 157-168.

Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. Journal of Clinical Oncology 2008; 26(17): 2839-2845.

Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute 2008; 100(9): 672-679.

Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444(7120), 756-760.

Nagle RB, Ahmann FR, McDaniel KM, Paquin ML, Clark VA, Celniker A. Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Research 1987; 47(1): 281-286.

Gu G, Yuan J, Wills M, Kasper S. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Research 2007; 67(10): 4807-4815.

Li Y, Cozzi PJ, Russell PJ. Promising tumor‐associated antigens for future prostate cancer therapy. Medicinal Research Reviews 2010; 30(1): 67-101.

Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG. (2008). PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Research 68(6): 1820-1825.

Li H, Jiang M, Honorio S, Patrawala L, Jeter CR, Calhoun-Davis T, Hayward SW, Tang DG. Methodologies in assaying prostate cancer stem cells. Cancer Stem Cells 2009; 568: 85-138.

Lang SH, Frame FM, Collins AT. Prostate cancer stem cells. The Journal of Pathology 2009; 217(2): 299-306.

Lawson DA, Witte ON. Stem cells in Prostate cancer initiation and progression. Journal of Clinical Investigation 2007; 117(8): 2044.

Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. Journal of Clinical Oncology 2008; 26(17): 2862-2870.

Miki J, Rhim JS. Prostate cell cultures as in vitro models for the study of normal stem cells and cancer stem cells. Prostate Cancer and Prostatic Diseases 2008; 11(1): 32-39.

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg R A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4): 704-715.

Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S, Sarkar FH. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PloS One 2010; 5(8): e12445.

Merchant AA, Matsui W. Targeting Hedgehog—a cancer stem cell pathway. Clinical Cancer Research 2010; 16(12): 3130-3140.

Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, Miele L. Targeting Notch to target cancer stem cells. Clinical Cancer Research 2010: 16(12); 3141-3152.

Kondratyev M, Kreso A, Hallett RM, et al. Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer. Oncogene 2012; 31(1): 93-103.

Wend P, Holland JD, Ziebold U, Birchmeier W. Wnt signaling in stem and cancer stem cells. In Seminars in Cell & Developmental Biology 2010; 21 (8): 855-863.

Zimmerman AL, Wu S. MicroRNAs, cancer and cancer stem cells. Cancer Letters 2011; 300(1): 10-19.

He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics 2004; 5(7): 522-531.

Chen X, Rycaj K, Liu X, Tang DG. New insights into Prostate cancer stem cells. Cell Cycle 2013; 12(4): 579-586.

Sharma N, Singh A, Baruah M. Targeting Cancer Stem Cell-Related miRNAs for Prostate Cancer Therapy. [EP22793] 2015 Mar [cited 2015 Mar 10]. Available from:

Liu X, Wang C, Chen Z, et al. MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochemical Journal 2011; 440(1): 23-31.

Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biology 2008; 5(3): 115-119.

Brabletz S, Brabletz T. The ZEB/miR‐200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Reports 2010; 11(9): 670-677.

Wang G, Guo X, Hong W, Liu Q, Wei T, Lu C, Kang J. Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proceedings of the National Academy of Sciences 2013; 110(8): 2858-2863.

Steele R, Mott JL, Ray RB. MBP-1 upregulates miR-29b, which represses Mcl-1, collagens, and matrix metalloproteinase-2 in Prostate cancer cells. Genes Cancer 2010; 1(4): 381-387.

Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB. MiRNA-29b suppresses Prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Molecular Cancer Therapeutics 2012; (5): 1166-1173.

Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nature Cell Biology 2013; 15(2): 201-213.

Liu C, Kelnar K, Liu B, Chen X, et al. Identification of miR-34a as a potent inhibitor of Prostate cancer progenitor cells and metastasis by directly repressing CD44. Nature Medicine 2011; 17(2): 211.

Qu Y, Li WC, Hellem MR, et al. MiR‐182 and miR‐203 induce mesenchymal to epithelial transition and self‐sufficiency of growth signals via repressing SNAI2 in Prostate cells. International Journal of Cancer 2013; 133(3): 544-555.

Liu R, Li J, Teng Z, Zhang Z, Xu Y. Overexpressed micro-RNA-182 promotes proliferation and invasion in Prostate cancer PC-3 cells by down-regulating N-myc downstream regulated gene 1 (NDRG1). PloS One 2013; 8(7): 1-10.

Ju SY, Chiou SH, Su Y. Maintenance of the stemness in CD44+ HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression. Stem Cell Research 2014; 12(1): 86-100.

Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME. The role of let-7 in cell differentiation and cancer. Endocrine-Related Cancer 2010; 17(1): F19-F36.

Jérôme T, Laurie P, Louis B, Pierre C. Enjoy the silence: the story of let-7 microRNA and cancer. Current Genomics 2007; 8(4): 229.

Hsieh IS, Chang KC, Tsai YT, et al. MicroRNA-320 suppresses the stem cell-like characteristics of Prostate cancer cells by down-regulating the Wnt/beta-catenin signaling pathway. Carcinogenesis 2012; bgs371.

Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG. Distinct microRNA expression profiles in Prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Research 2012; 72(13): 3393-3404.

Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315(5818): 1576-1579.

Wagner S, Ngezahayo A, Murua Escobar H, Nolte I. Role of miRNA Let-7 and Its Major Targets in Prostate Cancer. BioMed Research International 2014; 376326.

Porkka KP, Pfeiffer MJ, Waltering KK, et al. MicroRNA expression profiling in Prostate cancer. Cancer Res 2007; 67: 6130-6135.

Van der Auwera I, Limame R, van Dam P, et al. Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer 2010; 103: 532-541.

Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG. Distinct microRNA Expression Profiles in Prostate Cancer Stem/Progenitor Cells and Tumor-Suppressive Functions of let-7. Cancer Res 2012; 72: 3393-3404.

Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010; 29(29): 4194-4204.

Kao CJ, Martiniez A, Shi XB, Yang J, Evans CP, Dobi A, devVereWhite RW, Kung HJ. miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene 2014; 33(19): 2495-2503.

Baffa R, Fassan M, Volinia S, O'Hara B, Liu CG, Palazzo JP, Gardiman M, Rugge M, Gomella LG, Croce CM, Rosenberg A. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 2009; 219: 214-221.

Peng X, Guo W, Liu T, Wang X, et al. Identification of miRs143 and -145 that is associated with bone metastasis of Prostate cancer and involved in the regulation of EMT. PLoS One 2011, 6: e20341.

Huang S, Guo W, Tang Y, Ren D, Zou X, Peng, X. miR-143 and miR-145 inhibit stem cell characteristics of PC-3 Prostate cancer cells. Oncology Reports 2012; 28(5): 1831-1837.

Saini S, Majid S, Shahryari V, Arora S, Yamamura S, Chang I, Zaman MS, Deng G, Tanaka Y, Dahiya R. miRNA-708 control of CD44+ Prostate cancer-initiating cells. Cancer Research 2012; 72(14): 3618-3630.

Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology 2008; 10(2): 202-210.

Lu S, Zhu Q, Zhang Y, Song W, Wilson MJ, Liu, P. Dual‐Functions of miR‐373 and miR‐520c by Differently Regulating the Activities of MMP2 and MMP9. Journal of Cellular Physiology 2015; 230(8): 1862-1870.

Liu P, Wilson MJ. miR‐520c and miR‐373 upregulate MMP9 expression by targeting mTOR and SIRT1, and activate the Ras/Raf/MEK/Erk signaling pathway and NF‐κB factor in human fibrosarcoma cells. Journal of Cellular Physiology 2012; 227(2): 867-876.

Yeung J, Esposito MT, Gandillet A, et al. Beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 2010; 18: 606-18.

Dierks C, Beigi R, Guo GR, et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008; 14:238-49.

Zhao C, Blum J, Chen A, et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12:528-41.

Armstrong F, Brunet de la Grange P, Gerby B, et al. NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. Blood 2009; 113:1730-40.

Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Ebenhart CG. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006; 66: 7445-52.

Farnie G, Clarke RB, Spence K, et al. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 2007; 99: 616-27.

Wang Z, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. Anticancer Res 2011; 31: 1105-13.

Sullivan JP, Spinola M, Dodge M, Raso MG, et al. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 2010; 70: 9937-48.

Gulino A, Ferretti E, De Smaele E. Hedgehog signaling in colon cancer and stem cells. EMBO Mol Med 2009; 1: 300-2.

Zhao C, Chen A, Jamieson CH, et al. Hedgehog signaling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009; 458: 776-9.

O’Toole SA, Swarbrick A, Sutherland RL. The Hedgehog signaling pathway as a therapeutic target in early breast cancer development. Expert Opin Ther Targets 2009; 13: 1095-103.

Liu S, Dontu G, Mantle ID, Patel S, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66: 6063-71.

Peacock CD, Wang Q, Gesell GS, et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 4048-53.

Li P, Yang R, Gao WQ. Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer. Molecular Cancer 2014; 13: 55.

Karhadkar SS, Bova GS, Abdallah N, et al. (Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004; 431(7009): 707-712.

Bisson I, Prowse DM. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Research 2009; 19(6): 683-697.

Wang Z, Li Y, Kong D, Sarkar FH. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Current Drug Targets 2010; 11(6): 745.

Zhu ML, Kyprianou N. Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. The FASEB Journal 2010; 24(3): 769-777.

Chang CJ, Chao CH, Xia W, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology 2011; 13(3): 317-323.

Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nature Reviews Clinical Oncology 2001; 8(2): 97-106.

Jackson BL, Grabowska A, Ratan HL. MicroRNA in prostate cancer: functional importance and potential as circulating biomarkers. BMC Cancer 2014; 14(1): 930.

Hao J, Zhang Y, Deng M, et al. MicroRNA control of epithelial‐mesenchymal transition in cancer stem cells. International Journal of Cancer 2014; 135(5): 1019-1027.




How to Cite

Anshika N. Singh, Anand P. Khandwekar, & Neeti Sharma. (2015). Cancer Stem-Cell Related miRNAs: Novel Potential Targets for Metastatic Prostate Cancer. Journal of Analytical Oncology, 4(4),  146–156.