TCTP Silencing in Ovarian Cancer Cells Results in Actin Cytoskeleton Remodeling and Motility Increase

Authors

  • Yianzhu Liu The Houston Methodist Research Institute, Houston, TX, USA
  • Li Zhang The Houston Methodist Research Institute, Houston, TX, USA
  • Neelam Tejpal The Houston Methodist Research Institute, Houston, TX, USA
  • Jacek Z. Kubiak CNRS UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, University of Rennes 1, IFR 140 GFAS, Faculty of Medicine, 35 043, Rennes, France
  • Rafik M. Ghobrial The Houston Methodist Research Institute, Houston, TX, USA
  • Xian C. Li The Houston Methodist Research Institute, Houston, TX, USA
  • Malgorzata Kloc The Houston Methodist Research Institute, Houston, TX, USA

DOI:

https://doi.org/10.6000/1927-7229.2015.04.04.1

Keywords:

TCTP, siRNA, ovarian cancer cells, actin cytoskeleton, cell motility.

Abstract

 Translationally Controlled Tumor-associated Protein (TCTP) plays a role in a plethora of normal and cancer cell functions including cell cycle progression, cell growth and metastasis. Our previous studies showed that TCTP interacts with cellular cytoskeleton and is localized, in cell-type specific manner, on actin filaments in various types of ovarian cancer cells. Here we used small interfering RNA (siRNA) for silencing TCTP expression in human ovarian surface epithelial noncancerous cell line HIO180, ovarian carcinoma cell lines SKOV3 and OVCAR3 and analyzed effect of TCTP silencing on actin cytoskeleton and cell motility. We show that a down regulation of TCTP caused dramatic restructuring and redistribution of actin filaments in HIO180, SKOV3 and OVCAR3 cells and resulted in cell motility increase. This previously unidentified dependence of actin cytoskeleton remodeling and cell motility on TCTP level might be responsible for high metastatic potential and aggressiveness of ovarian cancer cells and will help to pinpoint novel targets for anticancer therapies..

References

Arcuri F, Papa S, Carducci A, Romagnoli R, Liberatori S, Riparbelli MG, Sanchez JC, Tosi P, del Vecchio MT. Translationally controlled tumor protein (TCTP) in the human prostate and prostate cancer cells: expression, distribution, and calcium binding activity. Prostate 2004; 60: 130-140. http://dx.doi.org/10.1002/pros.20054

Bommer UA, Thiele BJ. The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 2004; 36: 379-385. Review. http://dx.doi.org/10.1016/S1357-2725(03)00213-9

Chen SH, Wu PS, Chou, CH, Yan YT, Liu H, Weng SY, Yang-Yen HF. A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell 2007; 18: 2525-2532. http://dx.doi.org/10.1091/mbc.E07-02-0188

Jung J, Kim HY, Kim M, Sohn K, Kim M, Lee K. Translationally controlled tumor protein induces human breast epithelial cell transformation through the activation of Src. Oncogene 2011; 30: 2264-2274. http://dx.doi.org/10.1038/onc.2010.604

Lucibello M, Gambacurta A, Zonfrillo M, Pierimarchi P, Serafino A, Rasi G, Rubartelli A, Garaci E. TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp Cell Res 2011; 317: 2479-2489. http://dx.doi.org/10.1016/j.yexcr.2011.07.012

Telerman A, Amson R. The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat Rev Cancer 2009; 9: 206-216. http://dx.doi.org/10.1038/nrc2589

Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D, Colaluca I, Viale G, Rodrigues-Ferreira S, Wynendaele J, Chaloin O, Hoebeke J, Marine JC, Di Fiore PP, Telerman A. Reciprocal repression between P53 and TCTP. Nat Med 2011; 18: 91-99. http://dx.doi.org/10.1038/nm.2546

Rho SB, Lee JH, Park MS, Byun HJ, Kang S, Seo SS, Kim JY, Park SY. Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett 2011; 585: 29-35. http://dx.doi.org/10.1016/j.febslet.2010.11.014

Li F, Zhang D, Fujise K. Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem 2001; 276: 47542-47549. http://dx.doi.org/10.1074/jbc.M108954200

Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R, Telerman A. Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci USA 2002; 99: 14976-14981. http://dx.doi.org/10.1073/pnas.222470799

Tuynder M, Fiucci G, Prieur S, Lespagnol A, Géant A, Beaucourt S, Duflaut D, Besse S, Susini L, Cavarelli J, Moras D, Amson R, Telerman A. Translationally controlled tumor protein is a target of tumor reversion. Proc Natl Acad Sci USA 2004; 101: 15364-15369. http://dx.doi.org/10.1073/pnas.0406776101

Ballestrem C, Wehrle-Haller B, Hinz B, Imhof BA. Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Mol Biol Cell 2000; 11: 2999-3012. http://dx.doi.org/10.1091/mbc.11.9.2999

Beil M, Micoulet A, von Wichert G, Paschke S, Walther P, Omary MB, Van Veldhoven PP, Gern U, Wolff-Hieber E, Eggermann J, Waltenberger J, Adler G, Spatz J, Seufferlein T. Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat Cell Biol 2003; 5: 803-811. http://dx.doi.org/10.1038/ncb1037

Creekmore AL, Silkworth WT, Cimini D, Jensen RV, Roberts PC, Schmelz EM. Changes in gene expression and cellular architecture in an ovarian cancer progression model. PLoS One 2011; 6(3): e17676. http://dx.doi.org/10.1371/journal.pone.0017676

Czernobilsky B. Intermediate filaments in ovarian tumors. Int J Gynecol Pathol 1993; 12: 166-169. http://dx.doi.org/10.1097/00004347-199304000-00014

Ip CK, Cheung AN, Ngan HY, Wong AS. p70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells. Oncogene 2011; 30: 2420-2432. http://dx.doi.org/10.1038/onc.2010.615

Ketene AN, Schmelz EM, Roberts PC, Agah M. effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures. Nanomedicine 2012; 8: 93-102. http://dx.doi.org/10.1016/j.nano.2011.05.012

Korabiowska M, Ruschenburg I, Schulz H, Steinacker A, et al. Cytokeratin expression correlates with aneuploidy in cytological specimens of melanoma metastases. Anticancer Res 2005; 25: 2789-2792.

Moll R. Cytokeratins in the histological diagnosis of malignant tumors. Int J Biol Markers 1994; 9: 63-69.

Said NA, Najwer I, Socha MJ, Fulton DJ, Mok SC, Motamed K. SPARC inhibits LPA-mediated mesothelial-ovarian cancer cell crosstalk. Neoplasia 2007; 9: 23-35. http://dx.doi.org/10.1593/neo.06658

Shankar J, Messenberg A, Chan J, Underhill TM, Foster LJ, Nabi IR. Pseudopodial actin dynamics control epithelial-mesenchymal transition in metastatic cancer cells. Cancer Res 2010; 70: 3780-3790. http://dx.doi.org/10.1158/0008-5472.CAN-09-4439

Sharma S, Santiskulvong C, Bentolila LA, Rao J, Dorigo O, Gimzewski JK. Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells. Nanomedicine 2012; 8: 757-766. http://dx.doi.org/10.1016/j.nano.2011.09.015

Tanos B, Rodriguez-Boulan E. The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 2008; 27: 6939-6957. http://dx.doi.org/10.1038/onc.2008.345

Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, Salzet M. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett 2010; 291: 59-66. http://dx.doi.org/10.1016/j.canlet.2009.09.017

Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 2009; 28: 15-33. http://dx.doi.org/10.1007/s10555-008-9169-0

Zhang Y, Zhang M, Dong H, Yong S, Li X, Olashaw N, Kruk PA, Cheng JQ, Bai W, Chen J, Nicosia SV, Zhang X. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 2009; 28: 445-460. http://dx.doi.org/10.1038/onc.2008.388

American Cancer Society. Cancer facts and figures 2010. Atlanta: American Cancer Society 2010.

Jemal A, Siegel R, Xu J, Ward E. Cancer statistics. CA Cancer J Clin 2010; 60: 277-300. http://dx.doi.org/10.3322/caac.20073

Bazile F, Pascal A, Arnal I, Le Clainche C, Chesnel F, Kubiak JZ. Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 2009; 30: 555-565. http://dx.doi.org/10.1093/carcin/bgp022

Tsarova K, Yarmola EG, Bubb MR. Identification of a cofilin-like actin-binding site on translationally controlled tumor protein (TCTP). FEBS Lett 2010; 584: 4756-4760. http://dx.doi.org/10.1016/j.febslet.2010.10.054

Jaglarz MK, Bazile F, Laskowska K, Polanski Z, Chesnel F, Borsuk E, Kloc M, Kubiak JZ. Association of TCTP with centrosome and microtubules. Biochem Res Int 2012; 2012, Article ID 541906.

Kloc M, Tejpal N, Sidhu J, Ganachari M, Flores-Villanueva P, Jennings NB, Sood AK, Kubiak JZ, Ghobrial RM. Inverse correlation between TCTP/RhoA and p53/cyclin A/actin expression in ovarian cancer cells. Folia Histochemica and Cytobiologica 2012; 50: 358-67. http://dx.doi.org/10.5603/FHC.2012.0049

Chang YW, Marlin JW, Chance TW, Jakobi R. RhoA mediates cyclooxygenase-2 signaling to disrupt the formation of adherens junctions and increase cell motility. Cancer Res 2006; 66(24): 11700-8. http://dx.doi.org/10.1158/0008-5472.CAN-06-1818

Zhang A, Wang Q, Han Z, Hu W, Xi L, Gao Q, Wang S, Zhou J, Xu G, Meng L, Chen G, Ma D. Reduced expression of Snail decreases breast cancer cell motility by downregulating the expression and inhibiting the activity of RhoA GTPase. Oncol Lett 2013; 6(2): 339-346. Epub 2013 Jun 7.

Willipinski-Stapelfeldt B, Riethdorf S, Assmann V, Woelfle U, Rau T, Sauter G, Heukeshoven J, Pantel K. Changes in Cytoskeletal Protein Composition Indicative of an Epithelial-Mesenchymal Transition in Human Micrometastatic and Primary Breast Carcinoma Cells. Clin Cancer Res 2005; 11: 8006-8014. http://dx.doi.org/10.1158/1078-0432.CCR-05-0632

Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res 2010; 8: 629-642. http://dx.doi.org/10.1158/1541-7786.MCR-10-0139

Gagne JP, Ethier C, Gagne P, Mercier G, Bonicalzi ME, et al. Comparative proteome analysis of human epithelial ovarian cancer. Proteome Sci 2007; 5: 16. http://dx.doi.org/10.1186/1477-5956-5-16

Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 2010; 24: 447-463. http://dx.doi.org/10.1210/me.2009-0295

Gnanasekar M, Thirugnanam S, Zheng G, Chen A, Ramaswamy K. Gene silencing of translationally controlled tumor protein (TCTP) by siRNA inhibits cell growth and induces apoptosis of human prostate cancer cells. Int J Oncol 2009; 34: 1241-6. http://dx.doi.org/10.3892/ijo_00000252

Chu ZH, Liu L, Zheng CX, Lai W, Li SF, Wu H, Zeng YJ, Zhao HY, Guan YF. Chin Proteomic analysis identifies translationally controlled tumor protein as a mediator of phosphatase of regenerating liver-3-promoted proliferation, migration and invasion in human colon cancer cells. Med J (Engl) 2011; 124: 3778-85.

de Lanerolle P. Nuclear actin and myosins at a glance. J Cell Sci 2012; 125: 4945-9. http://dx.doi.org/10.1242/jcs.099754

Bettinger BT, Gilbert DM, Amberg DC. Actin up in the nucleus. Nat Rev Mol Cell Biol 2004; 5: 410-415. http://dx.doi.org/10.1038/nrm1370

Pederson T, Aebi U. Nuclear actin extends with no contraction in sight. Mol Biol Cell 2005; 16: 5055-5060. http://dx.doi.org/10.1091/mbc.E05-07-0656

Miyamoto K, Pasque V, Jullien J, Gurdon JB. Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev 2011; 25: 946-58. http://dx.doi.org/10.1101/gad.615211

Jin Y, Iwata KK, Belldegrun A, Figlin R, Pantuck A, Zhang ZF, Lieberman R, Rao J. Effect of an epidermal growth factor receptor tyrosine kinase inhibitor on actin remodeling in an in vitro bladder cancer carcinogenesis model. Mol Cancer Ther 2006; 5: 1754-1763. http://dx.doi.org/10.1158/1535-7163.MCT-06-0043

Downloads

Published

2015-09-28

How to Cite

Yianzhu Liu, Li Zhang, Neelam Tejpal, Jacek Z. Kubiak, Rafik M. Ghobrial, Xian C. Li, & Malgorzata Kloc. (2015). TCTP Silencing in Ovarian Cancer Cells Results in Actin Cytoskeleton Remodeling and Motility Increase. Journal of Analytical Oncology, 4(4),  122–131. https://doi.org/10.6000/1927-7229.2015.04.04.1

Issue

Section

Articles