IQGAP2 Displays Tumor Suppression Functions

IQGAP2 Displays Tumor Suppression Functions

Authors

  • Yanyun Xie Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
  • Anil Kapoor Division of Urology, Department of Surgery, McMaster University, Hamilton, ON, Canada
  • Hao Peng Department of Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
  • Jean-Claude Cutz Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
  • Lijian Tao Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
  • Damu Tang Department of Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada

DOI:

https://doi.org/10.6000/1927-7229.2015.04.02.5

Keywords:

IQGAP2, tumor suppression, Akt, hepatocellular carcinoma, gastric cancer, prostate cancer.

Abstract

 The IQGAP family consists of evolutionarily conserved scaffold proteins, IQGAP1, IQGAP2, and IQGAP3. IQGAP1 is 62 and 59% identical at the level of amino acid sequence to IQGAP2 and IQGAP3, respectively. IQGAPs possess the same domain structure with the individual motifs being highly homologous among IQGAPs. The conservation is even higher between IQGAP1 and IQGAP2. While the WW domain is 30% identical, other four motifs are 70 to 93% identical between both IQGAPs. Despite the high level identity, IQGAP1 and IQGAP2 display opposite impact on tumorigenesis. IQGAP1 is the most thoroughly examined, and clearly promotes cancer formation via its scaffold functions in facilitating the Raf-Mek-Erk and Wnt signalling. On the other hand, IQGAP2 is much less investigated and suppresses tumorigenesis. We will review the evidence that supports IQGAP2 reducing tumorigenesis, discuss its tumour suppression in the context of our updated knowledge on IQGAP1, and outline some future directions. Our emphasis will be placed on prostate cancer.

References

Schmidt VA. Watch the GAP: Emerging Roles for IQ Motif-Containing GTPase-Activating Proteins IQGAPs in Hepatocellular Carcinoma. Int J Hepatol 2012; 2012: 958673. http://dx.doi.org/10.1155/2012/958673

Briggs MW, Sacks DB. IQGAP proteins are integral components of cytoskeletal regulation. EMBO Rep 2003; 4: 571-574. http://dx.doi.org/10.1038/sj.embor.embor867

White CD, Brown MD, Sacks DB. IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett 2009; 583: 1817-1824. http://dx.doi.org/10.1016/j.febslet.2009.05.007

Hedman AC, Smith JM, Sacks DB. The biology of IQGAP proteins: beyond the cytoskeleton. EMBO Rep 2015; 16: 427-446. http://dx.doi.org/10.15252/embr.201439834

Brill S, Li S, Lyman CW, Church DM, Wasmuth JJ, Weissbach L, Bernards A, Snijders AJ. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol Cell Biol 1996; 16: 4869-78.

Sun W, Zhang K, Zhang X, Lei W, Xiao T, Ma J, Guo S, Shao S, Zhang H, Liu Y, Yuan J, Hu Z, Ma Y, Feng X, Hu S, Zhou J, Cheng S, Gao Y. Identification of differentially expressed genes in human lung squamous cell carcinoma using suppression subtractive hybridization. Cancer Lett 2004; 212: 83-93. http://dx.doi.org/10.1016/j.canlet.2004.03.023

Zhao H, Xie C, Lin X, Zhao Y, Han Y, Fan C, Zhang X, Du J, Han Y, Han Q, Wu G, Wang E. Coexpression of IQ-domain GTPase-activating protein 1 (IQGAP1) and Dishevelled (Dvl) is correlated with poor prognosis in non-small cell lung cancer. PLoS One 2014; 9: e113713. http://dx.doi.org/10.1371/journal.pone.0113713

Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, Charafe-Jauffret E, Loriod B, Bachelart L, Montfort J, Victorero G, Viret F, Ollendorff V, Fert V, Giovaninni M, Delpero JR, Nguyen C, Viens P, Monges G, Birnbaum D, Houlgatte R. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 2004; 23: 1377-1391. http://dx.doi.org/10.1038/sj.onc.1207262

Nabeshima K, Shimao Y, Inoue T, Koono M. Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. Cancer Lett 2002; 176: 101-9. http://dx.doi.org/10.1016/S0304-3835(01)00742-X

Wang XX, Li XZ, Zhai LQ, Liu ZR, Chen XJ, Pei Y. Overexpression of IQGAP1 in human pancreatic cancer. Hepatobiliary Pancreat Dis Int 2013; 12: 540-5. http://dx.doi.org/10.1016/S1499-3872(13)60085-5

Wang XX, Wang K, Li XZ, Zhai LQ, Qu CX, Zhao Y, Liu ZR, Wang HZ, An QJ, Jing LW, Wang XH. Targeted knockdown of IQGAP1 inhibits the progression of esophageal squamous cell carcinoma in vitro and in vivo. PLoS One 2014; 9: e96501. http://dx.doi.org/10.1371/journal.pone.0096501

Xia FD, Wang ZL, Chen HX, Huang Y, Li JD, Wang ZM, Li XY. Differential expression of IQGAP1/2 in Hepatocellular carcinoma and its relationship with clinical outcomes. Asian Pac J Cancer Prev 2014; 15: 4951-6. http://dx.doi.org/10.7314/APJCP.2014.15.12.4951

Dong P, Nabeshima K, Nishimura N, Kawakami T, Hachisuga T, Kawarabayashi T, Iwasaki H. Overexpression and diffuse expression pattern of IQGAP1 at invasion fronts are independent prognostic parameters in ovarian carcinomas. Cancer Lett 2006; 243: 120-7. http://dx.doi.org/10.1016/j.canlet.2005.11.024

Walch A, Seidl S, Hermannstädter C, Rauser S, Deplazes J, Langer R, von Weyhern CH, Sarbia M, Busch R, Feith M, Gillen S, Höfler H, Luber B. Combined analysis of Rac1, IQGAP1, Tiam1 and E-cadherin expression in gastric cancer. Mod Pathol 2008; 21: 544-52. http://dx.doi.org/10.1038/modpathol.2008.3

Hayashi H, Nabeshima K, Aoki M, Hamasaki M, Enatsu S, Yamauchi Y, Yamashita Y, Iwasaki H. Overexpression of IQGAP1 in advanced colorectal cancer correlates with poor prognosis-critical role in tumor invasion. Int J Cancer 2010; 126: 2563-74. http://dx.doi.org/10.1002/ijc.24987

Holck S, Nielsen HJ, Hammer E, Christensen IJ, Larsson LI. IQGAP1 in rectal adenocarcinomas: localization and protein expression before and after radiochemotherapy. Cancer Lett 2015; 356: 556-60. http://dx.doi.org/10.1016/j.canlet.2014.10.005

Jadeski L, Mataraza JM, Jeong HW, Li Z, Sacks DB. IQGAP1 stimulates proliferation and enhances tumorigenesis of human breast epithelial cells. J Biol Chem 2008; 283: 1008-17. http://dx.doi.org/10.1074/jbc.M708466200

Erdemir HH, Li Z, Sacks DB. IQGAP1 binds to estrogen receptor-α and modulates its function. J Biol Chem 2014; 289: 9100-12. http://dx.doi.org/10.1074/jbc.M114.553511

Hart MJ, Callow MG, Souza B, Polakis P. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J 1996; 15: 2997-3005.

Swart-Mataraza JM, Li Z, Sacks DB. IQGAP1 is a component of Cdc42 signaling to the cytoskeleton. J Biol Chem 2002; 277: 24753-63. http://dx.doi.org/10.1074/jbc.M111165200

Ren JG, Li Z, Sacks DB. IQGAP1 modulates activation of B-Raf. Proc Natl Acad Sci U S A 2007; 104: 10465-9. http://dx.doi.org/10.1073/pnas.0611308104

Roy M, Li Z, Sacks DB. IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. Mol Cell Biol 2005; 25: 7940-52. http://dx.doi.org/10.1128/MCB.25.18.7940-7952.2005

Roy M, Li Z, Sacks DB. IQGAP1 binds ERK2 and modulates its activity. J Biol Chem 2004; 279: 17329-37. http://dx.doi.org/10.1074/jbc.M308405200

Smith JM, Hedman AC, Sacks DB. IQGAPs choreograph cellular signaling from the membrane to the nucleus. Trends Cell Biol 2015; 25: 171-184. http://dx.doi.org/10.1016/j.tcb.2014.12.005

Jameson KL, Mazur PK, Zehnder AM, Zhang J, Zarnegar B, Sage J, Khavari PA. IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat Med 2013; 19: 626-30. http://dx.doi.org/10.1038/nm.3165

Carmon KS, Gong X, Yi J, Thomas A, Liu Q. RSPO-LGR4 functions via IQGAP1 to potentiate Wnt signaling. Proc Natl Acad Sci U S A 2014; 111: E1221-9. http://dx.doi.org/10.1073/pnas.1323106111

Epp JA, Chant J. An IQGAP-related protein controls actin-ring formation and cytokinesis in yeast. Curr Biol 1997; 7: 921-9. http://dx.doi.org/10.1016/S0960-9822(06)00411-8

Mateer SC, Morris LE, Cromer DA, Benseñor LB, Bloom GS. Actin filament binding by a monomeric IQGAP1 fragment with a single calponin homology domain. Cell Motil Cytoskeleton 2004; 58: 231-41. http://dx.doi.org/10.1002/cm.20013

Umemoto R, Nishida N, Ogino S, Shimada I. NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode. J Biomol NMR 2010; 48: 59-64. http://dx.doi.org/10.1007/s10858-010-9434-8

Kuroda S, Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, Kaibuchi K. Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1. J Biol Chem 1996; 271: 23363-7. http://dx.doi.org/10.1074/jbc.271.38.23363

Joyal JL, Annan RS, Ho YD, Huddleston ME, Carr SA, Hart MJ, Sacks DB. Calmodulin modulates the interaction between IQGAP1 and Cdc42. Identification of IQGAP1 by nanoelectrospray tandem mass spectrometry. J Biol Chem 1997; 272: 15419-25. http://dx.doi.org/10.1074/jbc.272.24.15419

Ho YD, Joyal JL, Li Z, Sacks DB. IQGAP1 integrates Ca2+/calmodulin and Cdc42 signaling. J Biol Chem 1999; 274: 464-70. http://dx.doi.org/10.1074/jbc.274.1.464

Owen D, Campbell LJ, Littlefield K, Evetts KA, Li Z, Sacks DB, Lowe PN, Mott HR. The IQGAP1-Rac1 and IQGAP1-Cdc42 interactions: interfaces differ between the complexes. J Biol Chem 2008; 283: 1692-704. http://dx.doi.org/10.1074/jbc.M707257200

McCallum SJ, Wu WJ, Cerione RA. Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2. J Biol Chem 1996; 271: 21732-7. http://dx.doi.org/10.1074/jbc.271.36.21732

White CD, Khurana H, Gnatenko DV, Li Z, Odze RD, Sacks DB, Schmidt VA. IQGAP1 and IQGAP2 are reciprocally altered in hepatocellular carcinoma. BMC Gastroenterol 2010; 10: 125. http://dx.doi.org/10.1186/1471-230X-10-125

Schmidt VA, Chiariello CS, Capilla E, Miller F, Bahou WF. Development of hepatocellular carcinoma in Iqgap2-deficient mice is IQGAP1 dependent. Mol Cell Biol 2008; 28: 1489-502. http://dx.doi.org/10.1128/MCB.01090-07

Gnatenko DV, Xu X, Zhu W, Schmidt VA. Transcript profiling identifies iqgap2(-/-) mouse as a model for advanced human hepatocellular carcinoma. PLoS One 2013; 8: e71826. http://dx.doi.org/10.1371/journal.pone.0071826

Ao R, Zhang DR, Du YQ, Wang Y. Expression and significance of Pin1, β-catenin and cyclin D1 in hepatocellular carcinoma. Mol Med Rep 2014; 10: 1893-8. http://dx.doi.org/10.3892/mmr.2014.2456

Dahmani R, Just PA, Perret C. The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2011; 35: 709-13. http://dx.doi.org/10.1016/j.clinre.2011.05.010

Jin SH, Akiyama Y, Fukamachi H, Yanagihara K, Akashi T, Yuasa Y.IQGAP2 inactivation through aberrant promoter methylation and promotion of invasion in gastric cancer cells. Int J Cancer 2008; 122: 1040-6. http://dx.doi.org/10.1002/ijc.23181

Williams H, Powell IJ. Epidemiology, pathology, and genetics of prostate cancer among African Americans compared with other ethnicities. Methods Mol Biol 2009; 472: 439-453. http://dx.doi.org/10.1007/978-1-60327-492-0_21

Rosenberg J, Small EJ. Prostate cancer update. Curr Opin Oncol 2003; 15: 217-21. http://dx.doi.org/10.1097/00001622-200305000-00007

Suh KS, Mutoh M, Gerdes M, Crutchley JM, Mutoh T, Edwards LE, Dumont RA, Sodha P, Cheng C, Glick A, Yuspa SH. Antisense suppression of the chloride intracellular channel family induces apoptosis, enhances tumor necrosis factor {alpha}-induced apoptosis, and inhibits tumor growth. Cancer Res 2005; 65: 562-71.

Ross JS. The androgen receptor in prostate cancer: therapy target in search of an integrated diagnostic test. Adv Anat Pathol 2007; 14: 353-7. http://dx.doi.org/10.1097/PAP.0b013e31814a52c4

Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF Jr, Hampton GM. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001; 61: 5974-8.

Lozano JJ, Soler M, Bermudo R, Abia D, Fernandez PL, Thomson TM, Ortiz AR. Dual activation of pathways regulated by steroid receptors and peptide growth factors in primary prostate cancer revealed by Factor Analysis of microarray data. BMC Genomics 2005; 6: 109. http://dx.doi.org/10.1186/1471-2164-6-109

Tamura K, Furihata M, Tsunoda T, Ashida S, Takata R, Obara W, Yoshioka H, Daigo Y, Nasu Y, Kumon H, Konaka H, Namiki M, Tozawa K, Kohri K, Tanji N, Yokoyama M, Shimazui T, Akaza H, Mizutani Y, Miki T, Fujioka T, Shuin T, Nakamura Y, Nakagawa H. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res 2007; 67: 5117-25. http://dx.doi.org/10.1158/0008-5472.CAN-06-4040

Xie Y, Yan J, Cutz JC, Rybak AP, He L, Wei F, Kapoor A, Schmidt VA, Tao L, Tang D.IQGAP2, A candidate tumour suppressor of prostate tumorigenesis. Biochim Biophys Acta 2012; 1822: 875-84. http://dx.doi.org/10.1016/j.bbadis.2012.02.019

Sherr CJ. Tumorsurveillance via the ARF-p53 pathway. Genes Dev 1998; 12: 2984-91. http://dx.doi.org/10.1101/gad.12.19.2984

Yamashiro S, Abe H, Mabuchi I. QGAP2 is required for the cadherin-mediated cell-to-cell adhesion in Xenopus laevis embryos. Dev Biol 2007; 308: 485-93. http://dx.doi.org/10.1016/j.ydbio.2007.06.001

Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004; 6: 97-105. http://dx.doi.org/10.1038/ncb1086

Johannsdottir HK, Jonsson G, Johannesdottir G, Agnarsson BA, Eerola H, Arason A, Heikkila P, Egilsson V, Olsson H, Johannsson OT, Nevanlinna H, Borg A, Barkardottir RB. Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer 2006; 119: 1052-60. http://dx.doi.org/10.1002/ijc.21934

Gessi M, Zur Mühlen A, Hammes J, Waha A, Denkhaus D, Pietsch T. Genome-wide DNA copy number analysis of desmoplastic infantile astrocytomas and desmoplastic infantile gangliogliomas. J Neuropathol Exp Neurol 2013; 72: 807-15. http://dx.doi.org/10.1097/NEN.0b013e3182a033a0

Chen F, Zhu HH, Zhou LF, Wu SS, Wang J, Chen Z. IQGAP1 is overexpressed in hepatocellular carcinoma and promotes cell proliferation by Akt activation. Exp Mol Med 2010; 42: 477-83. http://dx.doi.org/10.3858/emm.2010.42.7.049

Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T, Nomura N, Tani H, Shoji I, Matsuura Y, Yonehara S, Kaibuchi K. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin- mediated cell-cell adhesion. Science 1998; 281: 832-5. http://dx.doi.org/10.1126/science.281.5378.832

Yang Y, Zhao W, Xu QW, Wang XS, Zhang Y, Zhang J. IQGAP3 promotes EGFR-ERK signaling and the growth and metastasis of lung cancer cells. PLoS One 2014; 9: e97578. http://dx.doi.org/10.1371/journal.pone.0097578

Dixon MJ, Gray A, Schenning M, Agacan M, Tempel W, Tong Y, Nedyalkova L, Park HW, Leslie NR, van Aalten DM, Downes CP, Batty IH. IQGAP proteins reveal an atypical phosphoinositide (aPI) binding domain with a pseudo C2 domain fold. J Biol Chem 2012; 287: 22483-96. http://dx.doi.org/10.1074/jbc.M112.352773

Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, Liu X, Wu H. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003; 4: 209-221. http://dx.doi.org/10.1016/S1535-6108(03)00215-0

Li S, Wang Q, Chakladar A, Bronson RT, Bernards A. Gastric hyperplasia in mice lacking the putative Cdc42 effector IQGAP1. Mol Cell Biol 2000; 20: 697-701. http://dx.doi.org/10.1128/MCB.20.2.697-701.2000

Downloads

Published

2015-03-28

How to Cite

Yanyun Xie, Anil Kapoor, Hao Peng, Jean-Claude Cutz, Lijian Tao, & Damu Tang. (2015). IQGAP2 Displays Tumor Suppression Functions. Journal of Analytical Oncology, 4(2),  86–93. https://doi.org/10.6000/1927-7229.2015.04.02.5

Issue

Section

Articles
Loading...