Caspase Pathway Activation and Reactive Oxygen Species Generation in Apoptotic Cell Death of Human Leukemic U937 and K562 Cell Line in Response to King Cobra (Ophiophagus hannah) Venom

Authors

  • Tanmoy Bhowmik Laboratory of Toxinology & Experimental Pharmacodynamics, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700 009, India
  • Ajoy Kumar Biswas GD Hospital & Diabetes Institute, Kolkata-700016, India
  • Amrita Sarkar Laboratory of Toxinology & Experimental Pharmacodynamics, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700 009, India
  • Partha Pratim Saha Laboratory of Toxinology & Experimental Pharmacodynamics, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700 009, India
  • Aparna Gomes Former Scientist, Indian Institute of Chemical Biology, Kolkata-700032, India
  • Antony Gomes Laboratory of Toxinology & Experimental Pharmacodynamics, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700 009, India

DOI:

https://doi.org/10.6000/1927-7229.2014.03.03.8

Keywords:

Ophiophagus hannah, Venom, Leukemic cell, Apoptosis, Flow cytometry, Cell cycle.

Abstract

Resistance and decreasing efficacy of current synthetic drug for chemotherapy of leukemic cancer draws attention for development of newer anticancer agent from natural resources. In the present study, king cobra venom (OHV) significantly inhibited leukemic cell growth in dose and time dependent manner. For U937 and K562 cell line, the IC50 dose (72 h) was found to be 4.1 g/ml and 3.9 g/ml respectively, observed by trypan blue exclusion method and tetrazolium bromide reduction assay. OHV treated morphometry of leukemic cell showed the characteristic features of apoptosis. Both U937 and K562 cells were arrested in the G1 phase of cell cycle with most cells exhibiting the biochemical feature of early and late apoptosis. Mitochondrial membrane potential was lost and reactive oxygen species generated highly in OHV treated leukemic cell line (U937 and K562). Western blot analysis showed OHV increased expression of Bax and decreased expression of Bcl2 in OHV treated cell as compared to untreated control U937 and K562 cell. Upregulation of Cytochrome c, Bid, Bad, Caspase 3/8/9, p21 and NF-B down regulation of Cyclin D1, CDK4 was also showed by western blot analysis which revealed the possible pathway of OHV in cellular level. The results of this study demonstrated that OHV significantly and selectively induced leukemic cell death through both extrinsic and intrinsic apoptotic pathway.

References

Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA: A Cancer J Clin 2012; 62: 10-29. http://dx.doi.org/10.3322/caac.20138

Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 2012; 9: 193-9. http://dx.doi.org/10.7150/ijms.3635

Gomes A, Bhattacharjee P, Mishra R, Biswas KA, Dasgupta CS, Giri B. Anticancer potential of animal venoms and toxins. Indian J Exp Biol 2010; 48: 93-103.

Debnath A, Chatterjee U, Das M, Vedasiromoni RJ, Gomes A. Venom of Indian monocellate cobra and Russell’s viper show anticancer activity in experimental models. J Ethnopharmacol 2007; 111: 681-684. http://dx.doi.org/10.1016/j.jep.2006.12.027

Debnath A, Saha A, Gomes A, Biswas S, Chakraborty P, Gomes A, et al. A lethal cardiotoxic-cytotoxic protein from the Indian monocellate cobra (Naja kaouthia) venom. Toxicon 2010; 56: 569-579. http://dx.doi.org/10.1016/j.toxicon.2010.05.016

Bhattacharya S, Das T, Biswas A, Gomes A, Gomes A, Dungdung RS. A cytotoxicity protein (BF-CT1), purified from Bungarus fasciatus venom acts through apoptosis, modulation of PI3K/AKT, MAPKinase pathway and cell cycle regulation. Toxicon 2013; 74: 138-150. http://dx.doi.org/10.1016/j.toxicon.2013.08.052

Whitaker R. In Common Indian snakes, A field guide (The Macmilan Company of India Limited, New Delhi, India) 1978.

Lee CY, In Advances in cytopharmacology, Vol. 3, edited by Ceccarelli B & Clementi F (Raven press, New York) 1979,1.

Lee ML, Tan NH, Fung SY, Shamala DS. Antibacterial action of a heat stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. Comp Biochem Physiol C 2011; 153: 237-242.

Lee ML, Chung I, Fung SY, Kanthimathi MS, Tan NH. Antiproliferative activity of king cobra (Ophiophagus hannah) venom L-amino acid oxidase. Basic Clin Pharmacol Toxicol 2014; 114: 336-343. http://dx.doi.org/10.1111/bcpt.12155

Lee ML. Fung SY, Chung I, Palioor J, Cheah SH, Tan NH. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor xenograpt mouse model. Int J Med Sci 2014; 11: 593-601. http://dx.doi.org/10.7150/ijms.8096

Gomes A, De P. Hannahpep: a Novel Fibrinolytic Peptide from the Indian King Cobra (Ophiophagus hannah) venom. Biochem Biophys Res Comp 1999; 266: 488-491. http://dx.doi.org/10.1006/bbrc.1999.1818

Agrawal S, Ikeuchi T, Sun D, Sarin PS, Konopka A, Maizel J, et al. Inhibition of human immunodeficiency virus in early infected and chronically infected cells by antisense oligodeoxynucleotides and their phosphorothiooate analogues. Proc Natl Acad Sci 1989; 86: 7790-7794. http://dx.doi.org/10.1073/pnas.86.20.7790

Kawada K, Yonei T, Ueoka H, Kiura K, Tabata M, Takigawa N, Harada M, Tanimoto M. Comparison of chemosensitivity tests: clonogenic assay versus MTT assay. Acta Med okayama 2002; 56: 129-134.

Das T, Bhattacharya s, Halder B, Biswas A, Dasgupta S, Gomes A, et al. Cytotoxic and antioxidant property of a purified fraction (NN-32) of Indian Naja naja venom on Ehrlich ascites carcinoma in BALB/c mice. Toxicon 2011; 57: 1065-1072. http://dx.doi.org/10.1016/j.toxicon.2011.04.012

Bhowmik T, Saha PP, Dasgupta A, Gomes A. Antileukemic potential of PEGylated Gold nanoparticle conjugated with protein toxin (NKCT1) isolated from Indian cobra (Naja kaouthia) venom. Cancer Nano 2013; 4: 39-55. http://dx.doi.org/10.1007/s12645-013-0036-5

Wu M, Ming W, Tang Y, Zhou S, Dong W. The anticancer effect of cytotoxin 1 from Naja atra Cantor venom is mediated by a lysosomal cell death pathway involving lysosomal membrane permeabilization and Cathepsin b release. Am J Chin Med 2013; 41(3): 643-63. http://dx.doi.org/10.1142/S0192415X13500456

Roy S, Besra ES, De T, Banerjee B, Mukherjee J, Vedasiromoni RJ. Induction of apoptosis in Human leukemic cell lines U937, K562 and HL-60 by Litchi chinensis leaf extract via activation of mitochondria mediated caspase cascades. Open Leukemia J 2008; 1: 1-14. http://dx.doi.org/10.2174/1876816400801010001

Acharya S, Sahoo KS. Sustained targeting of Bcr-Abl+ leukemia cells by synergistic action of dual drug loaded nanoparticles and its implication for leukemia therapy. Biomaterials 2011; 32: 5643-5662. http://dx.doi.org/10.1016/j.biomaterials.2011.04.043

McGowan ME, Alling N, Jackson AE, Yagoub D, Hass KN, Allen DJ, et al. Evaluation of cell cycle arrest in estrogen responsive MCF7 Breast cancer cells: pitfalls of the MTS assay. PLoS ONE 2011; 6(6): e20623. doi:10.1371/jounal.pone.0020623.

Lin PJ, Yang SJ, Lee HJ, Hsieh TW, Chung GJ. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5ncell line. World J Gastroenterol 2006; 12(1): 21-28.

Jung JH, Park Y-J, Jeon S-H, Kwon H-T. Aquaporin-5: A marker protein for proliferation and migration of Human Breast Cancer Cells. PLoS ONE 2011; 6(12): e28492. Doi: 10.1371/journal.pone0028492.

Levokoff HL, Marsall PG, Ross HH, Caldeira M, Reynolds AB, Cakiroglu M, et al. Bromodeoxyuridine inhibits cancer cell proliferation in vitro and in vivo. Neoplasia 2008; 10(8): 804-816.

Condello S, Curro M, Ferlazzo N, Caccamo D, Satriano J, Ientile R. Agmatine effects on mitochondrial membrane potential and NF-κB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells. J Neurochem 2011; 116: 67-75. http://dx.doi.org/10.1111/j.1471-4159.2010.07085.x

Malik F, Kumar A, Bhushan S, Khan S, Bhatia A, Suri AK, et al. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 2007; 12: 2115-2133. http://dx.doi.org/10.1007/s10495-007-0129-x

Achiwa Y, Haegawa K, Komiya T, Udagawa Y. Ursolic acid induces bax-dependent apoptosis through the caspase-3 pathway in endometrial cancer SNG-II cells. Oncol Rep 2005; 13(1): 51-57.

Chaudhary H, Dhuna V, Shing J, Kanboj SS, Seshadri S. Evaluation of hydro-alcoholic extract of Elipta alba for its anticancer potential: an in vitro study. J Ethnopharmacol 2011; 136(2): 363-367. http://dx.doi.org/10.1016/j.jep.2011.04.066

Denicourt C, Dowdy SF. Medicine: Targeting apoptotic pathways in cancer cells. Science 2004; 305: 1411-1413. http://dx.doi.org/10.1126/science.1102974

Lam MH, Liu Q, Elledge SJ, Rosen JM. Chk1 is haplo in sufficient for multiple function critical to tumor suppression. Cancer Cell 2004; 6(1): 45-59. http://dx.doi.org/10.1016/j.ccr.2004.06.015

Debnath A, Saha A, Gomes A, Biswas S, Chakrabarti P, Giri B, et al. A lethal cardiotoxic –cytotoxic protein from the Indian monocellate cobra (Naja kaouthia) venom. Toxicon 2010; 56: 569-579. http://dx.doi.org/10.1016/j.toxicon.2010.05.016

Andrew KJ, Liu H, Suzi M, Vural ME, Xiao D, Weinstein IB. Resveratrol induces growth inhibition, s-phase arrest, apoptosis and changes in biomarker expression in several human cancer cell lines. Clin Cancer Res 2002; 8: 893-903.

Kwong JQ, Henning MS, Starkov AA, Manfredi G. The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol 2007; 179: 1163-1177. http://dx.doi.org/10.1083/jcb.200704059

Morabito R, Condello S, Curro M, Marino A, Ientile R, La Spada G. Oxidative stress induced by crude venom from the jellyfish Pelagia noctiluca in neural- like differentiated SH-SY5Y cell. Toxicol In Vitro 2012; 26: 694-699. http://dx.doi.org/10.1016/j.tiv.2012.03.002

Lou Y, Hurwitz J, Massagne J. Cell cycle inhibition by independent CDK and PCNA binding domains in p21cip1. Nature 1995; 375 (6527): 159-161. http://dx.doi.org/10.1038/375159a0

Castoria G, Barone VM, Domenico DM, Bilancio A, Ametrano D, Migliaccio A, et al. Non-transcriptional action of oestradiol and progestin triggers DNA synthesis. EMBO J 1999; 18: 2500-2510. http://dx.doi.org/10.1093/emboj/18.9.2500

Cheng X, Xiao Y, Wang X, Wang P, Li H, Liu Q. Anti-tumor and proapoptotic activity of ethanolic extract and its various fractions from Polytrichum commune L. ex Hedw in L1210 cells. J Ethnopharmacol 2012; 143: 49-56. http://dx.doi.org/10.1016/j.jep.2012.05.054

Ghobrial IM, Witzig TE, Adjei A. Targeting apoptosis pathways in cancer therapy. CA. Cancer J Clin 2012; 55: 178-194. http://dx.doi.org/10.3322/canjclin.55.3.178

Wang J, Jin Y, Xu Z, Zheng Z, Wan S. Involvement of caspase-3 activity and surviving downregulation in cinobufocini-induced apoptosis in A594 cells. Exp Biol Med 2009; 234(5): 566-572. http://dx.doi.org/10.3181/0811-RM-326

Giri B, Gomes A, Sengupta R, Banerjee S, Nautiyal J, Sarkar FH, et al. Curcumin synergizes the growth inhibitory properties of Indian toad (Bufo melanostictus, Schneider) skin derived factor (BM-ANF1) in HCT-116 colon cancer cells. Anticancer Res 2009; 29(1): 395-401.

Brannon-Peppas L, Blanchette JO. Nanoparticle and targetted systems for cancer therapy. Adv Drug Deliv Rev 2012; 64: 206-212. http://dx.doi.org/10.1016/j.addr.2012.09.033

Downloads

Published

2014-08-03

How to Cite

Tanmoy Bhowmik, Ajoy Kumar Biswas, Amrita Sarkar, Partha Pratim Saha, Aparna Gomes, & Antony Gomes. (2014). Caspase Pathway Activation and Reactive Oxygen Species Generation in Apoptotic Cell Death of Human Leukemic U937 and K562 Cell Line in Response to King Cobra (Ophiophagus hannah) Venom. Journal of Analytical Oncology, 3(3),  173–184. https://doi.org/10.6000/1927-7229.2014.03.03.8

Issue

Section

Articles