‘Hygienic’ Lymphocytes Convey Increased Cancer Risk

Authors

  • Tatiana Levkovich Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
  • Theofilos Poutahidis Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Greece
  • Kelsey Cappelle Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
  • Mark B. Smith Biological Engineering, Massachusetts Institute of Technology, Cambridge MA 02139, USA
  • Allison Perrotta Biological Engineering, Massachusetts Institute of Technology, Cambridge MA 02139, USA
  • Eric J. Alm Biological Engineering, Massachusetts Institute of Technology, Cambridge MA 02139, USA, Broad Institute of MIT and Harvard, Cambridge, MA, USA
  • Susan E. Erdman Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

DOI:

https://doi.org/10.6000/1927-7229.2014.03.03.1

Keywords:

Hygiene, ApcMin, cancer, inflammation, microbiome

Abstract

Risk of developing inflammation-associated cancers has increased in industrialized countries during the past 30 years. One possible explanation is societal hygiene practices with use of antibiotics and Caesarian births that provide too few early life exposures of beneficial microbes. Building upon a ‘hygiene hypothesis’ model whereby prior microbial exposures lead to beneficial changes in CD4+ lymphocytes, here we use an adoptive cell transfer model and find that too few prior microbe exposures alternatively result in increased inflammation-associated cancer growth in susceptible recipient mice. Specifically, purified CD4+ lymphocytes collected from ‘restricted flora’ donors increases multiplicity and features of malignancy in intestinal polyps of recipient ApcMin/+ mice, coincident with increased inflammatory cell infiltrates and instability of the intestinal microbiota. We conclude that while a competent immune system serves to maintain intestinal homeostasis and good health, under hygienic rearing conditions CD4+ lymphocytes instead exacerbate inflammation-associated tumorigenesis, subsequently contributing to more frequent cancers in industrialized societies.

References

Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262-7. http://dx.doi.org/10.1126/science.1223813

Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 2010; 330(6012): 1768-73. http://dx.doi.org/10.1126/science.1195568

Chinen T, Rudensky AY. The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunol Rev 2012; 245(1): 45-55. http://dx.doi.org/10.1111/j.1600-065X.2011.01083.x

Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012; 336(6086): 1268-73. http://dx.doi.org/10.1126/science.1223490

Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012; 489(7415): 231-41. http://dx.doi.org/10.1038/nature11551

Fujimura KE, Slusher NA, Cabana MD, Lynch SV. Role of the gut microbiota in defining human health. Expert Review of Anti-Infective Therapy 2010; 8(4): 435-54. http://dx.doi.org/10.1586/eri.10.14

Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology 2009; 136(1): 65-80. http://dx.doi.org/10.1053/j.gastro.2008.10.080

Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148(6): 1258-70. http://dx.doi.org/10.1016/j.cell.2012.01.035

Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol 2004; 12(12): 562-8. http://dx.doi.org/10.1016/j.tim.2004.10.008

Rook GA. Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology 2009; 126(1): 3-11. http://dx.doi.org/10.1111/j.1365-2567.2008.03007.x

Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol 2005; 6(4): 353-60. http://dx.doi.org/10.1038/ni1181

Wills-Karp M, Santeliz J, Karp CL. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nature reviews Immunology 2001; 1(1): 69-75. http://dx.doi.org/10.1038/35095579

Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157(1): 121-41. http://dx.doi.org/10.1016/j.cell.2014.03.011

Belkaid Y, Liesenfeld O, Maizels RM. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: induction and control of regulatory T cells in the gastrointestinal tract: consequences for local and peripheral immune responses. Clin Exp Immunol 2010; 160(1): 35-41. http://dx.doi.org/10.1111/j.1365-2249.2010.04131.x

Erdman SE, Poutahidis T. Cancer inflammation and regulatory T cells. Int J Cancer 2010; 127(4): 768-79.

Erdman SE, Rao VP, Olipitz W, Taylor CL, Jackson EA, Levkovich T, et al. Unifying roles for regulatory T cells and inflammation in cancer. Int J Cancer 2010; 126(7): 1651-65.

Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 1993; 5(11): 1461-71. http://dx.doi.org/10.1093/intimm/5.11.1461

Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1994; 1(7): 553-62. http://dx.doi.org/10.1016/1074-7613(94)90045-0

Powrie F. T cells in inflammatory bowel disease: protective and pathogenic roles. Immunity 1995; 3(2): 171-4. http://dx.doi.org/10.1016/1074-7613(95)90086-1

Powrie F, Maloy KJ. Immunology. Regulating the regulators. Science 2003; 299(5609): 1030-1. http://dx.doi.org/10.1126/science.1082031

Erdman SE, Poutahidis T, Tomczak M, Rogers AB, Cormier K, Plank B, et al. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol 2003; 162(2): 691-702. http://dx.doi.org/10.1016/S0002-9440(10)63863-1

Powrie F, Correa-Oliveira R, Mauze S, Coffman RL. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 1994; 179(2): 589-600. http://dx.doi.org/10.1084/jem.179.2.589

Rao VP, Poutahidis T, Ge Z, Nambiar PR, Horwitz BH, Fox JG, et al. Proinflammatory CD4+ CD45RB(hi) lymphocytes promote mammary and intestinal carcinogenesis in Apc(Min/+) mice. Cancer Res 2006; 66(1): 57-61. http://dx.doi.org/10.1158/0008-5472.CAN-05-3445

Rao VP, Poutahidis T, Fox JG, Erdman SE. Breast cancer: should gastrointestinal bacteria be on our radar screen? Cancer Res 2007; 67(3): 847-50. http://dx.doi.org/10.1158/0008-5472.CAN-06-3468

Poutahidis T, Rao VP, Olipitz W, Taylor CL, Jackson EA, Levkovich T, et al. CD4+ lymphocytes modulate prostate cancer progression in mice. Int J Cancer 2009; 125(4): 868-78. http://dx.doi.org/10.1002/ijc.24452

Erdman SE, Poutahidis T. Roles for inflammation and regulatory T cells in colon cancer. Toxicologic pathology 2010; 38(1): 76-87. http://dx.doi.org/10.1177/0192623309354110

Erdman SE, Rao VP, Poutahidis T, Ihrig MM, Ge Z, Feng Y, et al. CD4(+)CD25(+) regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice. Cancer Res 2003; 63(18): 6042-50.

Erdman SE, Sohn JJ, Rao VP, Nambiar PR, Ge Z, Fox JG, et al. CD4+CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+ mice. Cancer Res 2005; 65(10): 3998-4004. http://dx.doi.org/10.1158/0008-5472.CAN-04-3104

Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990; 247(4940): 322-4. http://dx.doi.org/10.1126/science.2296722

Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, et al. APC mutations occur early during colorectal tumorigenesis. Nature 1992; 359(6392): 235-7. http://dx.doi.org/10.1038/359235a0

Bromberg J, Wang TC. Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell 2009; 15(2): 79-80. http://dx.doi.org/10.1016/j.ccr.2009.01.009

Newman JV, Kosaka T, Sheppard BJ, Fox JG, Schauer DB. Bacterial infection promotes colon tumorigenesis in Apc(Min/+) mice. J Infect Dis 2001; 184(2): 227-30. http://dx.doi.org/10.1086/321998

Li Y, Kundu P, Seow SW, de Matos CT, Aronsson L, Chin KC, et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 2012; 33(6): 1231-8. http://dx.doi.org/10.1093/carcin/bgs137

Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012; 338(6103): 120-3. http://dx.doi.org/10.1126/science.1224820

Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Medicine 2009; 15(9): 1016-22. http://dx.doi.org/10.1038/nm.2015

Rao VP, Poutahidis T, Ge Z, Nambiar PR, Boussahmain C, Wang YY, et al. Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice. Cancer Res 2006; 66(15): 7395-400. http://dx.doi.org/10.1158/0008-5472.CAN-06-0558

Poutahidis T, Haigis KM, Rao VP, Nambiar PR, Taylor CL, Ge Z, et al. Rapid reversal of interleukin-6-dependent epithelial invasion in a mouse model of microbially induced colon carcinoma. Carcinogenesis 2007; 28(12): 2614-23. http://dx.doi.org/10.1093/carcin/bgm180

Kullberg MC, Jankovic D, Gorelick PL, Caspar P, Letterio JJ, Cheever AW, et al. Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticus-induced colitis. J Exp Med 2002; 196(4): 505-15. http://dx.doi.org/10.1084/jem.20020556

Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008; 453(7195): 620-5. http://dx.doi.org/10.1038/nature07008

Fox JG, Beck P, Dangler CA, Whary MT, Wang TC, Shi HN, et al. Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy. Nature Medicine 2000; 6(5): 536-42. http://dx.doi.org/10.1038/75015

ACS cancer facts and figures. US Cancer Fact and Figures 2004.

Preheim SP, Perrotta AR, Friedman J, Smilie C, Brito I, Smith MB, et al. Computational methods for high-throughput comparative analyses of natural microbial communities. Methods in enzymology 2013; 531: 353-70. http://dx.doi.org/10.1016/B978-0-12-407863-5.00018-6

Boivin GP, Washington K, Yang K, Ward JM, Pretlow TP, Russell R, et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 2003; 124(3): 762-77. http://dx.doi.org/10.1053/gast.2003.50094

Karamanavi E, Angelopoulou K, Lavrentiadou S, Tsingotjidou A, Abas Z, Taitzoglou I, et al. Urokinase-Type Plasminogen Activator Deficiency Promotes Neoplasmatogenesis in the Colon of Mice. Translational Oncology 2014; 7(2): 174-87.

Erdman SE, Rao VP, Poutahidis T, Rogers AB, Taylor CL, Jackson EA, et al. Nitric oxide and TNF-alpha trigger colonic inflammation and carcinogenesis in Helicobacter hepaticus-infected, Rag2-deficient mice. Proc Natl Acad Sci USA 2009; 106(4): 1027-32. http://dx.doi.org/10.1073/pnas.0812347106

Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F, et al. Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 2007; 104(50): 19977-82. http://dx.doi.org/10.1073/pnas.0704620104

Downloads

Published

2014-08-03

How to Cite

Tatiana Levkovich, Theofilos Poutahidis, Kelsey Cappelle, Mark B. Smith, Allison Perrotta, Eric J. Alm, & Susan E. Erdman. (2014). ‘Hygienic’ Lymphocytes Convey Increased Cancer Risk. Journal of Analytical Oncology, 3(3),  113–121. https://doi.org/10.6000/1927-7229.2014.03.03.1

Issue

Section

Articles