Molecular Pathology of Immune Checkpoint Inhibitor-Induced Myocarditis


  • Krystal A. Hughes School of Pharmacy, Department of Clinical Pharmacy
  • Gerald M. Higa School of Medicine, Section of Hematology/Oncology, West Virginia University, Morgantown, WV 26506, USA



Autoimmunity, CD4 T cells, CTLA-4, CTLs, Immune checkpoint inhibitor, Myocarditis, PD-1.


The improvement in tumor outcomes associated with the use of immune checkpoint inhibitors (ICIs) is supported by results of numerous clinical trials. Even though most publications reporting the clinical efficacy of these agents include a discussion of the biological mechanisms, narratives related to the complex nature of the adaptive immune response are frequently, though they should not be, mundane. It is also apparent that there tends to be a cursory, or even complete absence, of explanations related to the pathological mechanism(s) of the toxic reactions in the vast majority of papers that report adverse events associated with ICI therapy. Furthermore, the belief that cytotoxic CD8+ T cells mediate not only the antitumor, but also immune-related adverse, effects may be plausible, yet incorrect. This being the case, instead of providing only clinical details of a severe adverse event associated with combination ICI therapy in a patient with melanoma, the authors chose to scrutinize the repertoire and role of T cells in the pathogenesis of myocarditis as an example of other ICI-associated incidents of autoimmunity.


Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19(1): 683-765. DOI:

Joss A, Akdis M, Faith A, Blaser KA, Akdis CA. IL-10 directly acts on T cells by specifically altering the CD28 co-stimulation pathway. Eur J Immunol 2000; 30(6): 1683-90.<1683::AID-IMMU1683>3.0.CO;2-A DOI:<1683::AID-IMMU1683>3.0.CO;2-A

Park M-J, Lee S-H, Kim E-K, Lee E-J, Baek J-A, Park S-H, et al. Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumat oid inflammation in mice. Sci Rep 2018; 8: 3753. DOI:

Wan YY, Flavell RA. Regulatory T cells, transforming growth factor-β, and immune suppression. Proc Am Thorac Soc 2007; 4(3): 271-6. DOI:

Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity 2015; 21; 42(4): 607-12. DOI:

McDermott D, Haanen J, Chen T-T, Lorigan P, O'Day S, for the MDX010-20 investigators. Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Ann Oncol 2013; 24(10): 2694-8. DOI:

Hodi, FS, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Cowey CL, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (Check Mate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 2018; 19(11): 1480-92. DOI:

Mok TSK, Wu Y-L, Kudaba I, Kowalski DM, Cho BC, Turna HZ, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomized, open-label, controlled, phase 3 trial. Lancet 2019; 393(10183): 1819-30. DOI:

Rapoport BL, van Eeden R, Sibaud V, Epstein JB, Klastersky J, Aapro M, et al. Supportive care for patients undergoing immunotherapy. Supp Care Cancer 2017; 25(10): 3017-30. DOI:

Hu YB, Zhang Q, Li HJ, Michot JM, Liu HB, Zhan P, et al. Evaluation of rare but severe immune related adverse effects in PD-1 and PD-L1 inhibitors in non-small cell lung cancer: a meta-analysis. Transl Lung Cancer Res 2017; 6(Suppl 1): S8-20. DOI:

Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, et al. AJCC Cancer Staging Manual. 8th ed. New York: Springer 2017. DOI:

Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2018; 36(17): 1714-68. DOI:

Palaskas N, Lopez-Mattei J, Durand JB, Iliescu C, Deswal A. Immune checkpoint inhibitor myocarditis: pathophysiological characteristics, diagnosis, and treatment. J Am Heart Assoc 2020; 9(2): e0137579. DOI:

Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373(1): 23-34. DOI:

Wang DY, Salem JE, Cohen JV. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol 2018; 4(12): 1721-8. DOI:

Harper K, Balzano C, Rouvier E, Mattéi MG, Luciani MF, Golstein P. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J Immunol 1991 Aug 1; 147(3): 1037-44.

Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, et al. The interaction properties of costimulatory molecules revisited. Immunity 2002; 17(2): 201-10. DOI:

Lindsten T, Lee KP, Harris ES, Petryniak B, Craighead N, Reynolds PJ, et al. Characterization of CTLA-4 structure and expression on human T cells. J Immunol 1993; 151(7): 3489-99.

Linsley PS, Greene JL, Tan P, Bradshaw J, Ledbetter JA, Anasetti C, et al. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med 1992; 176(6): 1595-1604. DOI:

Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994; 1(5): 405-13. DOI:

Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O’Shea MA, et al. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 2008; 181(10): 6738-46. DOI:

Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192(7): 1027-34. DOI:

Lin DY, Tanaka Y, Iwasaki M, Gittis AG, Su HP, Mikami B, et al. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci U S A 2008; 105(8): 3011-6. DOI:

Zinkernagel RM, Doherty PC. Immunological surveillance against altered self-components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature 1974; 251(5475): 547-8. DOI:

Berner B, Akca D, Jung T, Muller GA, Reuss-Borst MA. Analysis of Th1 and Th2 cytokines expressing CD4+ and CD8+ T cells in rheumatoid arthritis by flow cytometry. J Rheumatol 2000; 27(5): 1128-35.

Wong F, Karttunen J, Dumont C, Wen L, Visintin I, Pilip I, et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat Med 1999; 5(9): 1026-31. DOI:

Rocken M, Saurat JH, Hauser C: A common precursor for CD4+ T cells producing IL-2 or IL-4. J Immunol 1992; 148(4): 1031-6.

Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2015; 74(1): 5-17. DOI:

Van Boxel JA, Paget SA. Predominantly T-cell infiltrate in rheumatoid synovial membranes. N Engl J Med 1975; 293(11): 517-20. DOI:

Banerjee S, Webber C, Poole AR: The induction of arthritis in mice by the cartilage proteoglycan aggrecan: roles of CD4+ and CD8+ T cells. Cell Immunol 1992; 144(2): 347-57. DOI:

Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383(6603): 787-93. DOI:

Hassel JC, Heinzerling L, Aberle J, Bähr O, Eigentler TK, Grimm MO, et al. Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): Evaluation and management of adverse drug reactions. Cancer Treat Rev 2017; 57: 36-49. DOI:

Alegre ML, Shiels H, Thompson CB, Gajewski TF. Expression and function of CTLA-4 in Th1 and Th2 cells. J Immunol 1998; 161(7): 3347-56.

Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389(6652): 737-42. DOI:

Foussat A, Cottrez F, Brun V, Fournier N, Breittmayer J-P, Groux H. Comparative study between T regulatory type 1 and CD4+CD25+ T cells in the control of inflammation. J Immunol 2003; 171(10): 5018-26. DOI:

Kalekar LA, Mueller DL. Relationship between CD4 regulatory T cells and anergy in vivo. J Immunol 2017; 198(7): 2527-33. DOI:

Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155(3): 1151-64.

Fontenot, J. D., Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4(4): 330-6. DOI:

Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendo-crinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27(1): 20-1. DOI:

Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 2009; 10(9): 1000-7. DOI:

Hori S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 2003; 81: 331-71. DOI:

Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192(2): 303-10. DOI:

Schmidt EM, Wang CJ, Ryan GA, Clough LE Qureshi OS, Goodall M, et al. Ctla-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. J Immunol 2009; 182(1): 274-82. DOI:

Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, et al. A new member of the immunoglobulin superfamily--CTLA-4. Nature 1987; 328(6127): 267-70. DOI:

Chan DV, Gibson HM, Aufiero BM, Wilson AJ, Hafner MS, Mi Q-S, et al. Differential CTLA-4 expression in human CD4+ versus CD8+ T cells is associated with increased NFAT1 and inhibition of CD4+ proliferation. Genes Immun 2014; 15(1): 25-32. DOI:

Gattinoni L, Ranganathan A, Surman DR, Palmer DC, Antony PA, Theoret MR, et al. CTLA-4 dysregulation of self/tumor-reactive CD8+ T-cell function is CD4+ T-cell dependent. Blood 2006; 108(12): 3818-23. DOI:

Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC, et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 2008; 111(11): 5326-33. DOI:

Malek TR, Castro I. Interleukin-2 receptor signaling: At the interface between tolerance and immunity. Immunity 2010; 33(2): 153-65. DOI:

Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996; 183(6): 2533-40. DOI:

Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 2006; 441(7095): 890-3. DOI:




How to Cite

Krystal A. Hughes, & Gerald M. Higa. (2020). Molecular Pathology of Immune Checkpoint Inhibitor-Induced Myocarditis. Journal of Analytical Oncology, 9, 25–32.