Effectiveness of Einsteinium Nanoparticles in Optothermal Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation


  • Alireza Heidari Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
  • Katrina Schmitt Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
  • Maria Henderson Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
  • Elizabeth Besana Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA




Einsteinium Nanoparticles, Scanning Electron Microscope (SEM), 3D Finite Element Method (FEM), Heat Transfer Equation, Optothermal, Heat Distribution, Thermoplasmonic, Einsteinium Nanorods, Human Cancer Cells, Tissues and Tumors Treatment, Simulation, Synchrotron Radiation, Emission, Function, Beam Energy.


 In the current study, thermoplasmonic characteristics of Einsteinium nanoparticles with spherical, core-shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Einsteinium nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Einsteinium nanoparticles by solving heat equation. The obtained results show that Einsteinium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.

Scanning Electron Microscope (SEM) image of Einsteinium nanoparticles with 50000x zoom.


Yu, P.; Wu, J.; Liu, S.; Xiong, J.; Jagadish, C.; Wang, Z. M.Design and Fabrication of Silicon Nanowires towards Efficient Solar Cells. Nano Today2016, 11, 704–737, 10.1016/j.nantod.2016.10.001 DOI: https://doi.org/10.1016/j.nantod.2016.10.001

Sandhu, S.; Fan, S.Current-Voltage Enhancement of a Single Coaxial Nanowire Solar Cell. ACS Photonics2015, 2, 1698–1704, 10.1021/acsphotonics.5b00236 DOI: https://doi.org/10.1021/acsphotonics.5b00236

van Dam, D.; Van Hoof, N. J. J.; Cui, Y.; van Veldhoven, P. J.; Bakkers, E. P. A. M.; Gómez Rivas, J.; Haverkort, J. E. M.High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers. ACS Nano2016, 10, 11414–11419, 10.1021/acsnano.6b06874 DOI: https://doi.org/10.1021/acsnano.6b06874

Luo, S.; Yu, W. B.; He, Y.; Ouyang, G.Size-Dependent Optical Absorption Modulation of Si/Ge and Ge/Si Core/shell Nanowires with Different Cross-Sectional Geometries. Nanotechnology2015, 26, 085702, 10.1088/0957-4484/26/8/085702 DOI: https://doi.org/10.1088/0957-4484/26/8/085702

Yu, P.; Yao, Y.; Wu, J.; Niu, X.; Rogach, A. L.; Wang, Z.Effects of Plasmonic Metal Core-Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells. Sci. Rep.2017, 7, 7696, 10.1038/s41598-017-08077-9 DOI: https://doi.org/10.1038/s41598-017-08077-9

Gouda, A. M.; Allam, N. K.; Swillam, M. A.Efficient Fabrication Methodology of Wide Angle Black Silicon for Energy Harvesting Applications. RSC Adv.2017, 7, 26974–26982, 10.1039/C7RA03568C DOI: https://doi.org/10.1039/C7RA03568C

Branz, H. M.; Yost, V. E.; Ward, S.; Jones, K. M.; To, B.; Stradins, P.Nanostructured Black Silicon and the Optical Reflectance of Graded-Density Surfaces. Appl. Phys. Lett.2009, 94, 231121, 10.1063/1.3152244 DOI: https://doi.org/10.1063/1.3152244

Fazio, B.; Artoni, P.; Antonía Iatí, M.; D’Andrea, C.; Lo Faro, M. J.; Del Sorbo, S.; Pirotta, S.; Giuseppe Gucciardi, P.; Musumeci, P.; Salvatore Vasi, C.; Saija, R.; Galli, M.; Priolo, F.; Irrera, A.Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array. Light: Sci. Appl.2016, 5, e16062, 10.1038/lsa.2016.62 DOI: https://doi.org/10.1038/lsa.2016.62

Ko, M.-D.; Rim, T.; Kim, K.; Meyyappan, M.; Baek, C.-K.High Efficiency Silicon Solar Cell Based on Asymmetric Nanowire. Sci. Rep.2015, 5, 11646, 10.1038/srep11646 DOI: https://doi.org/10.1038/srep11646

Oh, J.; Yuan, H. C.; Branz, H. M.An 18.2%-Efficient Black-Silicon Solar Cell Achieved through Control of Carrier Recombination in Nanostructures. Nat. Nanotechnol.2012, 7, 743–748, 10.1038/nnano.2012.166 DOI: https://doi.org/10.1038/nnano.2012.166

Lin, H.; Xiu, F.; Fang, M.; Yip, S.; Cheung, H. Y.; Wang, F.; Han, N.; Chan, K. S.; Wong, C. Y.; Ho, J. C.Rational Design of Inverted Nanopencil Arrays for Cost-Effective, Broadband, and Omnidirectional Light Harvesting. ACS Nano2014, 8, 3752–3760, 10.1021/nn500418x DOI: https://doi.org/10.1021/nn500418x

Garnett, E.; Yang, P.Light Trapping in Silicon Nanowire Solar Cells. Nano Lett.2010, 10, 1082–1087, 10.1021/nl100161z DOI: https://doi.org/10.1021/nl100161z

Misra, S.; Yu, L.; Foldyna, M.; Roca I Cabarrocas, P.High Efficiency and Stable Hydrogenated Amorphous Silicon Radial Junction Solar Cells Built on VLS-Grown Silicon Nanowires. Sol. Energy Mater. Sol. Cells2013, 118, 90–95, 10.1016/j.solmat.2013.07.036 DOI: https://doi.org/10.1016/j.solmat.2013.07.036

Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A.Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications. Nat. Mater.2010, 9, 239–244, 10.1038/nmat2635 DOI: https://doi.org/10.1038/nmat2635

Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M.Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources. Nature2007, 449, 885–889, 10.1038/nature06181 DOI: https://doi.org/10.1038/nature06181

Razek, S. A.; Swillam, M. A.; Allam, N. K.Vertically Aligned Crystalline Silicon Nanowires with Controlled Diameters for Energy Conversion Applications: Experimental and Theoretical Insights. J. Appl. Phys.2014, 115, 194305, 10.1063/1.4876477 DOI: https://doi.org/10.1063/1.4876477

Dhindsa, N.; Walia, J.; Saini, S. S.A Platform for Colorful Solar Cells with Enhanced Absorption. Nanotechnology2016, 27, 495203, 10.1088/0957-4484/27/49/495203 DOI: https://doi.org/10.1088/0957-4484/27/49/495203

Dhindsa, N.; Walia, J.; Pathirane, M.; Khodadad, I.; Wong, W. S.; Saini, S. S.Adjustable Optical Response of Amorphous Silicon Nanowires Integrated with Thin Films. Nanotechnology2016, 27, 145703, 10.1088/0957-4484/27/14/145703 DOI: https://doi.org/10.1088/0957-4484/27/14/145703

Zhu, J.; Yu, Z.; Burkhard, G. F.; Hsu, C.-M.; Connor, S. T.; Xu, Y.; Wang, Q.; McGehee, M.; Fan, S.; Cui, Y.Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Lett.2009, 9, 279–282, 10.1021/nl802886y DOI: https://doi.org/10.1021/nl802886y

Klinger, D.; Łusakowska, E.; Zymierska, D.Nano-Structure Formed by Nanosecond Laser Annealing on Amorphous Si Surface. Mater. Sci. Semicond. Process.2006, 9, 323–326, 10.1016/j.mssp.2006.01.027 DOI: https://doi.org/10.1016/j.mssp.2006.01.027

Kumar, P.; Krishna, M. G.; Bhattacharya, A.Excimer Laser Induced Nanostructuring of Silicon Surfaces. J. Nanosci. Nanotechnol.2009, 9, 3224–3232, 10.1166/jnn.2009.207 DOI: https://doi.org/10.1166/jnn.2009.207

Kumar, P.Surface Modulation of Silicon Surface by Excimer Laser at Laser Fluence below Ablation Threshold. Appl. Phys. A: Mater. Sci. Process.2010, 99, 245–250, 10.1007/s00339-009-5510-x DOI: https://doi.org/10.1007/s00339-009-5510-x

Adikaari, A. A. D. T.; Silva, S. R. P.Thickness Dependence of Properties of Excimer Laser Crystallized Nano-Polycrystalline Silicon. J. Appl. Phys.2005, 97, 114305, 10.1063/1.1898444 DOI: https://doi.org/10.1063/1.1898444

Adikaari, A. A. D. T.; Dissanayake, D. M. N. M.; Hatton, R. A.; Silva, S. R. P.Efficient Laser Textured Nanocrystalline Silicon-Polymer Bilayer Solar Cells. Appl. Phys. Lett.2007, 90, 203514, 10.1063/1.2739365 DOI: https://doi.org/10.1063/1.2739365

Adikaari, A. A. D. T.; Silva, S. R. P.Excimer Laser Crystallization and Nanostructuring of Amorphous Silicon for Photovoltaic Applications. Nano2008, 3, 117–126, 10.1142/S1793292008000915 DOI: https://doi.org/10.1142/S1793292008000915

Tang, Y. F.; Silva, S. R. P.; Boskovic, B. O.; Shannon, J. M.; Rose, M. J.Electron Field Emission from Excimer Laser Crystallized Amorphous Silicon. Appl. Phys. Lett.2002, 80, 4154–4156, 10.1063/1.1482141 DOI: https://doi.org/10.1063/1.1482141

Jin, S.; Hong, S.; Mativenga, M.; Kim, B.; Shin, H. H.; Park, J. K.; Kim, T. W.; Jang, J.Low Temperature Polycrystalline Silicon with Single Orientation on Glass by Blue Laser Annealing. Thin Solid Films2016, 616, 838–841, 10.1016/j.tsf.2016.10.026 DOI: https://doi.org/10.1016/j.tsf.2016.10.026

Crouch, C. H.; Carey, J. E.; Warrender, J. M.; Aziz, M. J.; Mazur, E.; Génin, F. Y.Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon. Appl. Phys. Lett.2004, 84, 1850–1852, 10.1063/1.1667004 DOI: https://doi.org/10.1063/1.1667004

Wu, C.; Crouch, C. H.; Zhao, L.; Carey, J. E.; Younkin, R.; Levinson, J. A.; Mazur, E.; Farrell, R. M.; Gothoskar, P.; Karger, A.Near-Unity below-Band-Gap Absorption by Microstructured Silicon. Appl. Phys. Lett.2001, 78, 1850–1852, 10.1063/1.1358846 DOI: https://doi.org/10.1063/1.1358846

Pedraza, A. J.; Fowlkes, J. D.; Lowndes, D. H.Silicon Microcolumn Arrays Grown by Nanosecond Pulsed-Excimer Laser Irradiation. Appl. Phys. Lett.1999, 74, 2322, 10.1063/1.123838 DOI: https://doi.org/10.1063/1.123838

Pedraza, A. J.; Fowlkes, J. D.; Jesse, S.; Mao, C.; Lowndes, D. H.Surface Micro-Structuring of Silicon by Excimer-Laser Irradiation in Reactive Atmospheres. Appl. Surf. Sci.2000, 168, 251–257, 10.1016/S0169-4332(00)00611-5 DOI: https://doi.org/10.1016/S0169-4332(00)00611-5

Porte, H. P.; Turchinovich, D.; Persheyev, S.; Fan, Y.; Rose, M. J.; Jepsen, P. U.On Ultrafast Photoconductivity Dynamics and Crystallinity of Black Silicon. IEEE Trans. Terahertz Sci. Technol.2013, 3, 331–341, 10.1109/TTHZ.2013.2255917 DOI: https://doi.org/10.1109/TTHZ.2013.2255917

Georgiev, D. G.; Baird, R. J.; Avrutsky, I.; Auner, G.; Newaz, G.Controllable Excimer-Laser Fabrication of Conical Nano-Tips on Silicon Thin Films. Appl. Phys. Lett.2004, 84, 4881–4883, 10.1063/1.1762978 DOI: https://doi.org/10.1063/1.1762978

Eizenkop, J.; Avrutsky, I.; Georgiev, D. G.; Chaudchary, V.Single-Pulse Excimer Laser Nanostructuring of Silicon: A Heat Transfer Problem and Surface Morphology. J. Appl. Phys.2008, 103, 094311, 10.1063/1.2910196 DOI: https://doi.org/10.1063/1.2910196

Eizenkop, J.; Avrutsky, I.; Auner, G.; Georgiev, D. G.; Chaudhary, V.Single Pulse Excimer Laser Nanostructuring of Thin Silicon Films: Nanosharp Cones Formation and a Heat Transfer Problem. J. Appl. Phys.2007, 101, 094301, 10.1063/1.2720185 DOI: https://doi.org/10.1063/1.2720185

Hong, L.; Wang, X. C.; Zheng, H. Y.; He, L.; Wang, H.; Yu, H. Y.; RusliFemtosecond Laser Induced Nanocone Structure and Simultaneous Crystallization of 1.6 μM Amorphous Silicon Thin Film for Photovoltaic Application. J. Phys. D: Appl. Phys.2013, 46, 195109, 10.1088/0022-3727/46/19/195109 DOI: https://doi.org/10.1088/0022-3727/46/19/195109

Hong, L.; Wang, X.; Rusli; Wang, H.; Zheng, H.; Yu, H.Crystallization and Surface Texturing of Amorphous-Si Induced by UV Laser for Photovoltaic Application. J. Appl. Phys.2012, 111, 043106, 10.1063/1.3686612 DOI: https://doi.org/10.1063/1.3686612

Magdi, S.; Swillam, M. A.Broadband Absorption Enhancement in Amorphous Si Solar Cells Using Metal Gratings and Surface Texturing. Proc. SPIE2017, 10099, 1009912, 10.1117/12.2253326 DOI: https://doi.org/10.1117/12.2253326

Diedenhofen, S. L.; Janssen, O. T. A.; Grzela, G.; Bakkers, E. P. A. M.; Gómez Rivas, J.Strong Geometrical Dependence of the Absorption of Light in Arrays of Semiconductor Nanowires. ACS Nano2011, 5, 2316–2323, 10.1021/nn103596n DOI: https://doi.org/10.1021/nn103596n

Jäger, S. T.; Strehle, S.Design Parameters for Enhanced Photon Absorption in Vertically Aligned Silicon Nanowire Arrays. Nanoscale Res. Lett.2014, 9, 511, 10.1186/1556-276X-9-511 DOI: https://doi.org/10.1186/1556-276X-9-511

Gouda, A. M.; Elsayed, M. Y.; Khalifa, A. E.; Ismail, Y.; Swillam, M. A.Lithography-Free Wide-Angle Antireflective Self-Cleaning Silicon Nanocones. Opt. Lett.2016, 41, 3575, 10.1364/OL.41.003575 DOI: https://doi.org/10.1364/OL.41.003575

Magdi, S.; Swillam, M. A.Optical Analysis of Si-Tapered Nanowires/low Band Gap Polymer Hybrid Solar Cells. Proc. SPIE2017, 10099, 100991D, 10.1117/12.2253299 DOI: https://doi.org/10.1117/12.2253299

Jiang, Y.; Gong, X.; Qin, R.; Liu, H.; Xia, C.; Ma, H.Efficiency Enhancement Mechanism for Poly(3, 4-ethylenedioxythiophene):Poly(styrenesulfonate)/Silicon Nanowires Hybrid Solar Cells Using Alkali Treatment. Nanoscale Res. Lett.2016, 11, 267, 10.1186/s11671-016-1450-5 DOI: https://doi.org/10.1186/s11671-016-1450-5

Gong, X.; Jiang, Y.; Li, M.; Liu, H.; Ma, H.Hybrid Tapered Silicon nanowire/PEDOT:PSS Solar Cells. RSC Adv.2015, 5 (14), 10310–10317, 10.1039/C4RA16603E DOI: https://doi.org/10.1039/C4RA16603E

Mohammad, N. S.Understanding Quantum Confinement in Nanowires: Basics, Applications and Possible Laws. J. Phys.: Condens. Matter2014, 26, 423202, 10.1088/0953-8984/26/42/423202 DOI: https://doi.org/10.1088/0953-8984/26/42/423202

Zhang, A.; Luo, S.; Ouyang, G.; Yang, G. W.Strain-Induced Optical Absorption Properties of Semiconductor Nanocrystals. J. Chem. Phys.2013, 138, 244702, 10.1063/1.4811222 DOI: https://doi.org/10.1063/1.4811222

He, Y.; Yu, W.; Ouyang, G.Shape-Dependent Conversion Efficiency of Si Nanowire Solar Cells with Polygonal Cross-Sections. J. Appl. Phys.2016, 119, 225101, 10.1063/1.4953377 DOI: https://doi.org/10.1063/1.4953377

Tchakarov, S.; Das, D.; Saadane, O.; Kharchenko, A. V.; Suendo, V.; Kail, F.; Roca i Cabarrocas, P.Helium versus Hydrogen Dilution in the Optimization of Polymorphous Silicon Solar Cells. J. Non-Cryst. Solids2004, 338–340, 668–672, 10.1016/j.jnoncrysol.2004.03.068 DOI: https://doi.org/10.1016/j.jnoncrysol.2004.03.068

Roszairi, H.; Rahman, S. a.High Deposition Rate Thin Film Hydrogenated Amorphous Silicon Prepared by D.c. Plasma Enhanced Chemical Vapour Deposition of Helium Diluted Silane. IEEE International Conference on Semiconductor Electronics, 2002. Proceedings. ICSE 2002, Panang, Malaysia, Dec. 19–21, 2002; IEEE: New York, NY, USA, 2002; pp 300–303, DOI: 10.1109/SMELEC.2002.1217830. DOI: https://doi.org/10.1109/SMELEC.2002.1217830

N’Guyen, T. T. T.; Duong, H. T. T.; Basuki, J.; Montembault, V.; Pascual, S.; Guibert, C.; Fresnais, J.; Boyer, C.; Whittaker, M. R.; Davis, T. P.; Fontaine, L.Functional Iron Oxide Magnetic Nanoparticles with Hyperthermia-Induced Drug Release Ability by Using a Combination of Orthogonal Click Reactions. Angew. Chem., Int. Ed.2013, 52, 14152–14156, 10.1002/anie.201306724 DOI: https://doi.org/10.1002/anie.201306724

Xu, Z.; Zhao, Y.; Wang, X.; Lin, T.A Thermally Healable Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposite based on Diels-Alder chemistry. Chem. Commun.2013, 49, 6755–6757, 10.1039/c3cc43432j DOI: https://doi.org/10.1039/c3cc43432j

Engel, T.; Kickelbick, G.Self-Healing Nanocomposites from Silica – Polymer Core – Shell Nanoparticles. Polym. Int.2014, 63, 915–923, 10.1002/pi.4642 DOI: https://doi.org/10.1002/pi.4642

Engel, T.; Kickelbick, G.Furan-Modified Spherosilicates as Building Blocks for Self-Healing Materials. Eur. J. Inorg. Chem.2015, 2015, 1226–1232, 10.1002/ejic.201402551 DOI: https://doi.org/10.1002/ejic.201402551

Torres-Lugo, M.; Rinaldi, C.Thermal Potentiation of Chemotherapy by Magnetic Nanoparticles. Nanomedicine2013, 8, 1689–1707, 10.2217/nnm.13.146 DOI: https://doi.org/10.2217/nnm.13.146

Hohlbein, N.; Shaaban, A.; Bras, A. R.; Pyckhout-Hintzen, W.; Schmidt, A. M.Self-healing Dynamic Bond-based Rubbers: Understanding the Mechanisms in Ionomeric Elastomer Model Systems. Phys. Chem. Chem. Phys.2015, 17, 21005–21017, 10.1039/C5CP00620A DOI: https://doi.org/10.1039/C5CP00620A

Wu, C.-S.; Kao, T.-H.; Li, H.-Y.; Liu, Y.-L.Preparation of Polybenzoxazine-functionalized Fe3O4 Nanoparticles through in situ Diels–Alder Polymerization for High Performance Magnetic Polybenzoxazine/Fe3O4 Nanocomposites. Compos. Sci. Technol.2012, 72, 1562–1567, 10.1016/j.compscitech.2012.06.018 DOI: https://doi.org/10.1016/j.compscitech.2012.06.018

Menon, A. V.; Madras, G.; Bose, S.Ultrafast Self-Healable Interfaces in Polyurethane Nanocomposites Designed Using Diels–Alder “Click” as an Efficient Microwave Absorber. ACS Omega2018, 3, 1137–1146, 10.1021/acsomega.7b01845 DOI: https://doi.org/10.1021/acsomega.7b01845

Engel, T.; Kickelbick, G.Thermoreversible Reactions on Inorganic Nanoparticle Surfaces: Diels–Alder Reactions on Sterically Crowded Surfaces. Chem. Mater.2013, 25, 149–157, 10.1021/cm303049k DOI: https://doi.org/10.1021/cm303049k

Schäfer, S.; Kickelbick, G.Self-Healing Polymer Nanocomposites based on Diels-Alder-reactions with Silica Nanoparticles: The Role of the Polymer Matrix. Polymer2015, 69, 357–368, 10.1016/j.polymer.2015.03.017 DOI: https://doi.org/10.1016/j.polymer.2015.03.017

Park, J. S.; Darlington, T.; Starr, A. F.; Takahashi, K.; Riendeau, J.; Thomas Hahn, H.Multiple Healing Effect of Thermally Activated Self-Healing Composites based on Diels–Alder reaction. Compos. Sci. Technol.2010, 70, 2154–2159, 10.1016/j.compscitech.2010.08.017 DOI: https://doi.org/10.1016/j.compscitech.2010.08.017

Li, J.; Liang, J.; Li, L.; Ren, F.; Hu, W.; Li, J.; Qi, S.; Pei, Q.Healable Capacitive Touch Screen Sensors Based on Transparent Composite ElectrodesComprising Silver Nanowires and a Furan/Maleimide Diels-Alder Cycloaddition Polymer. ACS Nano2014, 8, 12874–12882, 10.1021/nn506610p DOI: https://doi.org/10.1021/nn506610p

Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G.Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc.2004, 126, 273–279, 10.1021/ja0380852 DOI: https://doi.org/10.1021/ja0380852

Frison, R.; Cernuto, G.; Cervellino, A.; Zaharko, O.; Colonna, G. M.; Guagliardi, A.; Masciocchi, N.Magnetite–Maghemite Nanoparticles in the 5–15 nm Range: Correlating the Core–Shell Composition and the Surface Structure to the Magnetic Properties. A Total Scattering Study. Chem. Mater.2013, 25, 4820–4827, 10.1021/cm403360f DOI: https://doi.org/10.1021/cm403360f

Santoyo Salazar, J.; Perez, L.; de Abril, O.; Truong Phuoc, L.; Ihiawakrim, D.; Vazquez, M.; Greneche, J.-M.; Begin-Colin, S.; Pourroy, G.Magnetic Iron Oxide Nanoparticles in 10–40 nm Range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties. Chem. Mater.2011, 23, 1379–1386, 10.1021/cm103188a DOI: https://doi.org/10.1021/cm103188a

Guerrero, G.; Mutin, P. H.; Vioux, A.Anchoring of Phosphonate and Phosphinate Coupling Molecules on Titania Particles. Chem. Mater.2001, 13, 4367–4373, 10.1021/cm001253u DOI: https://doi.org/10.1021/cm001253u

Babu, K.; Dhamodharan, R.Grafting of Poly(methyl methacrylate) Brushes from Magnetite Nanoparticles Using a Phosphonic Acid Based Initiator by Ambient Temperature Atom Transfer Radical Polymerization (ATATRP). Nanoscale Res. Lett.2008, 3, 109–117, 10.1007/s11671-008-9121-9 DOI: https://doi.org/10.1007/s11671-008-9121-9

Mohapatra, S.; Pramanik, P.Synthesis and Stability of Functionalized Iron Oxide Nanoparticles using Organophosphorus Coupling Agents. Colloids Surf., A2009, 339, 35–42, 10.1016/j.colsurfa.2009.01.009 DOI: https://doi.org/10.1016/j.colsurfa.2009.01.009

Larsen, B. A.; Hurst, K. M.; Ashurst, W. R.; Serkova, N. J.; Stoldt, C. R.Mono- and Dialkoxysilane Surface Modification of Superparamagnetic Iron Oxide Nanoparticles for Application as Magnetic Resonance Imaging Contrast Agents. J. Mater. Res.2012, 27, 1846–1852, 10.1557/jmr.2012.160 DOI: https://doi.org/10.1557/jmr.2012.160

Davis, K.; Qi, B.; Witmer, M.; Kitchens, C. L.; Powell, B. A.; Mefford, O. T.Quantitative Measurement of Ligand Exchange on Iron Oxides via Radiolabeled Oleic Acid. Langmuir2014, 30, 10918–10925, 10.1021/la502204g DOI: https://doi.org/10.1021/la502204g

Feichtenschlager, B.; Pabisch, S.; Peterlik, H.; Kickelbick, G.Nanoparticle Assemblies as Probes for Self-Assembled Monolayer Characterization: Correlation between Surface Functionalization and Agglomeration Behavior. Langmuir2012, 28, 741–750, 10.1021/la2023067 DOI: https://doi.org/10.1021/la2023067

Musa, O. M.Handbook of Maleic Anhydride Based Materials: Syntheses, Properties and Applications;Springer International Publishing: Switzerland, 2016; p 175ff.

Sauer, R.; Froimowicz, P.; Scholler, K.; Cramer, J. M.; Ritz, S.; Mailander, V.; Landfester, K.Design, Synthesis, and Miniemulsion Polymerization of New Phosphonate Surfmers and Application Studies of the Resulting Nanoparticles as Model Systems for Biomimetic Mineralization and Cellular Uptake. Chem. - Eur. J.2012, 18, 5201–5212, 10.1002/chem.201103256 DOI: https://doi.org/10.1002/chem.201103256

Lu, C.; Bhatt, L. R.; Jun, H. Y.; Park, S. H.; Chai, K. Y.Carboxyl–Polyethylene Glycol–Phosphoric Acid: A Ligand for highly stabilized Iron Oxide Nanoparticles. J. Mater. Chem.2012, 22, 19806–19811, 10.1039/c2jm34327d DOI: https://doi.org/10.1039/c2jm34327d

Patsula, V.; Kosinova, L.; Lovric, M.; Ferhatovic Hamzic, L.; Rabyk, M.; Konefal, R.; Paruzel, A.; Slouf, M.; Herynek, V.; Gajovic, S.; Horak, D.Superparamagnetic Fe3O4 Nanoparticles: Synthesis by Thermal Decomposition of Iron(III) Glucuronate and Application in Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces2016, 8, 7238–7247, 10.1021/acsami.5b12720 DOI: https://doi.org/10.1021/acsami.5b12720

Pothayee, N.; Balasubramaniam, S.; Davis, R. M.; Riffle, J. S.; Carroll, M. R. J.; Woodward, R. C.; St Pierre, T. G.Synthesis of ‘ready-to-adsorb’ Polymeric Nanoshells for Magnetic Iron Oxide Nanoparticles via Atom Transfer Radical Polymerization. Polymer2011, 52, 1356–1366, 10.1016/j.polymer.2011.01.047 DOI: https://doi.org/10.1016/j.polymer.2011.01.047

Daou, J.; Begin-Colin, S.; Grenèche, J. M.; Thomas, F.; Derory, A.; Bernhardt, P.; Legaré, P.; Pourroy, G.Phosphate Adsorption Properties of Magnetite-Based Nanoparticles. Chem. Mater.2007, 19, 4494–4505, 10.1021/cm071046v DOI: https://doi.org/10.1021/cm071046v

Breucker, L.; Landfester, K.; Taden, A.Phosphonic Acid-Functionalized Polyurethane Dispersions with Improved Adhesion Properties. ACS Appl. Mater. Interfaces2015, 7, 24641–24648, 10.1021/acsami.5b06903 DOI: https://doi.org/10.1021/acsami.5b06903

Sahoo, Y.; Pizem, H.; Fried, T.; Golodnitsky, D.; Burstein, L.; Sukenik, C. N.; Markovich, G.Alkyl Phosphonate/Phosphate Coating on Magnetite Nanoparticles: A Comparison with Fatty Acids. Langmuir2001, 17, 7907–7911, 10.1021/la010703+ DOI: https://doi.org/10.1021/la010703+

Longo, R. C.; Cho, K.; Schmidt, W. G.; Chabal, Y. J.; Thissen, P.Monolayer Doping via Phosphonic Acid Grafting on Silicon: Microscopic Insight from Infrared Spectroscopy and Density Functional Theory Calculations. Adv. Funct. Mater.2013, 23, 3471–3477, 10.1002/adfm.201202808 DOI: https://doi.org/10.1002/adfm.201202808

Luschtinetz, R.; Seifert, G.; Jaehne, E.; Adler, H.-J. P.Infrared Spectra of Alkylphosphonic Acid Bound to Aluminium Surfaces. Macromol. Symp.2007, 254, 248–253, 10.1002/masy.200750837 DOI: https://doi.org/10.1002/masy.200750837

Thomas, L. C.; Chittenden, R. A.Characteristic Infrared Absorption Frequencies of Organophosphorus Compounds-II. P-O-(X) Bonds. Spectrochim. Acta1964, 20, 489–502, 10.1016/0371-1951(64)80044-8 DOI: https://doi.org/10.1016/0371-1951(64)80044-8

Quinones, R.; Shoup, D.; Behnke, G.; Peck, C.; Agarwal, S.; Gupta, R. K.; Fagan, J. W.; Mueller, K. T.; Iuliucci, R. J.; Wang, Q.Study of Perfluorophosphonic Acid Surface Modifications on Zinc Oxide Nanoparticles. Materials2017, 10, 1–16, 10.3390/ma10121363 DOI: https://doi.org/10.3390/ma10121363

Lalatonne, Y.; Paris, C.; Serfaty, J. M.; Weinmann, P.; Lecouvey, M.; Motte, L.Bis-Phosphonates-Ultra Small Superparamagnetic Iron Oxide Nanoparticles: A Platform towards Diagnosis and Therapy. Chem. Commun.2008, 2553–2555, 10.1039/b801911h DOI: https://doi.org/10.1039/b801911h

Jastrzebski, W.; Sitarz, M.; Rokita, M.; Bulat, K.Infrared Spectroscopy of different Phosphates Structures. Spectrochim. Acta, Part A2011, 79, 722–727, 10.1016/j.saa.2010.08.044 DOI: https://doi.org/10.1016/j.saa.2010.08.044

Brodard-Severac, F.; Guerrero, G.; Maquet, J.; Florian, P.; Gervais, C.; Mutin, P. H.High-Field 17O MAS NMR Investigation of Phosphonic Acid Monolayers on Titania. Chem. Mater.2008, 20, 5191–5196, 10.1021/cm8012683 DOI: https://doi.org/10.1021/cm8012683

Brice-Profeta, S.; Arrio, M. A.; Tronc, E.; Menguy, N.; Letard, I.; CartierditMoulin, C.; Noguès, M.; Chanéac, C.; Jolivet, J. P.; Sainctavit, P.Magnetic Order in g-Fe2O3 Nanoparticles: A XMCD Study. J. Magn. Magn. Mater.2005, 288, 354–365, 10.1016/j.jmmm.2004.09.120 DOI: https://doi.org/10.1016/j.jmmm.2004.09.120

Tronc, E.; Ezzir, A.; Cherkaoui, R.; Chanéac, C.; Noguès, M.; Kachkachi, H.; Fiorani, D.; Testa, A. M.; Grenèche, J. M.; Jolivet, J. P.Surface-Related Properties of g-Fe2O3 Nanoparticles. J. Magn. Magn. Mater.2000, 221, 63–79, 10.1016/S0304-8853(00)00369-3 DOI: https://doi.org/10.1016/S0304-8853(00)00369-3

Yee, C.; Kataby, G.; Ulman, A.; Prozorov, T.; White, H.; King, A.; Rafailovich, M.; Sokolov, J.; Gedanken, A.Self-Assembled Monolayers of Alkanesulfonic and -phosphonic Acids on Amorphous Iron Oxide Nanoparticles. Langmuir1999, 15, 7111–7115, 10.1021/la990663y DOI: https://doi.org/10.1021/la990663y

Jolivet, J. P.; Chaneac, C.; Tronc, E.Iron Oxide Chemistry. From Molecular Clusters to Extended Solid Networks. Chem. Commun.2004, 481–487, 10.1039/B304532N DOI: https://doi.org/10.1002/chin.200418249

Campbell, V. E.; Tonelli, M.; Cimatti, I.; Moussy, J. B.; Tortech, L.; Dappe, Y. J.; Riviere, E.; Guillot, R.; Delprat, S.; Mattana, R.; Seneor, P.; Ohresser, P.; Choueikani, F.; Otero, E.; Koprowiak, F.; Chilkuri, V. G.; Suaud, N.; Guihery, N.; Galtayries, A.; Miserque, F.; Arrio, M. A.; Sainctavit, P.; Mallah, T.Engineering the Magnetic Coupling and Anisotropy at the Molecule-Magnetic Surface Interface in Molecular Spintronic Devices. Nat. Commun.2016, 7, 13646–10, 10.1038/ncomms13646 DOI: https://doi.org/10.1038/ncomms13646

Pabisiak, T.; Winiarski, M. J.; Ossowski, T.; Kiejna, A.Adsorption of Gold Subnano-Structures on a Magnetite (111) Surface and their Interaction with CO. Phys. Chem. Chem. Phys.2016, 18, 18169–18179, 10.1039/C6CP03222B DOI: https://doi.org/10.1039/C6CP03222B

Gomes, R.; Hassinen, A.; Szczygiel, A.; Zhao, Q.; Vantomme, A.; Martins, J. C.; Hens, Z.Binding of Phosphonic Acids to CdSe Quantum Dots: A Solution NMR Study. J. Phys. Chem. Lett.2011, 2, 145–152, 10.1021/jz1016729 DOI: https://doi.org/10.1021/jz1016729

Chun, Y.-J.; Park, J.-N.; Oh, G.-M.; Hong, S.-I.; Kim, Y.-J.Synthesis of ω-Phthalimidoalkylphosphonates. Synthesis1994, 1994, 909–910, 10.1055/s-1994-25599 DOI: https://doi.org/10.1055/s-1994-25599

A. Heidari, C. Brown, “Study of Composition and Morphology of Cadmium Oxide (CdO) Nanoparticles for Eliminating Cancer Cells”, J Nanomed Res., Volume 2, Issue 5, 20 Pages, 2015. DOI: https://doi.org/10.15406/jnmr.2015.02.00042

A. Heidari, C. Brown, “Study of Surface Morphological, Phytochemical and Structural Characteristics of Rhodium (III) Oxide (Rh2O3) Nanoparticles”, International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Volume 1, Issue 1, Pages 15–19, 2015. DOI: https://doi.org/10.18052/www.scipress.com/IJPPE.1.15

A. Heidari, “An Experimental Biospectroscopic Study on Seminal Plasma in Determination of Semen Quality for Evaluation of Male Infertility”, Int J Adv Technol 7: e007, 2016. DOI: https://doi.org/10.4172/0976-4860.1000e007

A. Heidari, “Extraction and Preconcentration of N–Tolyl–Sulfonyl–Phosphoramid–Saeure–Dichlorid as an Anti–Cancer Drug from Plants: A Pharmacognosy Study”, J Pharmacogn Nat Prod 2: e103, 2016. DOI: https://doi.org/10.4172/2472-0992.1000e103

A. Heidari, “A Thermodynamic Study on Hydration and Dehydration of DNA and RNA−Amphiphile Complexes”, J Bioeng Biomed Sci S: 006, 2016. DOI: https://doi.org/10.4172/2155-9538.S3-006

A. Heidari, “Computational Studies on Molecular Structures and Carbonyl and Ketene Groups’ Effects of Singlet and Triplet Energies of Azidoketene O=C=CH–NNN and Isocyanatoketene O=C=CH–N=C=O”, J Appl Computat Math 5: e142, 2016. DOI: https://doi.org/10.4172/2168-9679.1000e142

A. Heidari, “Study of Irradiations to Enhance the Induces the Dissociation of Hydrogen Bonds between Peptide Chains and Transition from Helix Structure to Random Coil Structure Using ATR–FTIR, Raman and 1HNMR Spectroscopies”, J Biomol Res Ther 5: e146, 2016. DOI: https://doi.org/10.4172/2167-7956.1000e146




How to Cite

Alireza Heidari, Katrina Schmitt, Maria Henderson, & Elizabeth Besana. (2019). Effectiveness of Einsteinium Nanoparticles in Optothermal Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation . Journal of Analytical Oncology, 8, 43–62. https://doi.org/10.30683/1927-7229.2019.08.07