Intracellular Zinc Excess as One of the Main Factors in the Etiology of Prostate Cancer
DOI:
https://doi.org/10.6000/1927-7229.2016.05.03.5Keywords:
Human prostate gland, peripheral zone, prostatic cells, prostatic fluid, zinc, histologicalparameters, age-related changes in human prostate, prostate cancer.Abstract
Numerous studies show that prevalence of prostate cancer (PCa) drastically increases with age, these malignant tumours are mainly formed in the peripheral zone of the prostate gland, and a high intake of red meat is associated with a statistically significant elevation in risk of PCa. The factors which cause all these well-specified features of the PCa are currently unclear. Here we describe one factor which can play an important role in etiology of malignant transformation of the prostate and is connected with the above-mentioned features of PCa. It is hypothesized that the prostatic intracellular Zn concentrations are probably one of the most important factors in the etiology of PCa. For an endorsement of our standpoint the estimation of changes of intracellular Zn concentrations over males lifespan was obtained using morphometric and Zn content data for the peripheral zone of prostate tissue, as well as Zn concentration in prostatic fluid. It was shown that the Zn concentrations in prostatic cells for men aged over 45 years are 10-fold higher than in those aged 18 to 30 years and this excessive accumulation of Zn may disturb the cells functions, resulting in cellular degeneration, death or malignant transformation.We hypothesize this excessive intracellular Zn concentration in cells of the prostate gland periphery has previously unrecognized and most important consequences, associated with PCa.
References
Forootan SS, Hussain S, Aachi V, Foster CS, Ke Y. Molecular mechanisms involved in the transition of prostate cancer cells from androgen dependant to castration resistant state. J Androl Gynaecol 2014; 2(2).
Tao ZQ, Shi AM, Wang KX, Zhang WD. Epidemiology of prostate cancer: current status. Eur Rev Med Pharmacol Sci 2015; 19(5): 805-12.
Center AA, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, Bray F. International variation in prostate cancer incidence and mortality rates. Eur Urol 2012; 61: 1079-92. http://dx.doi.org/10.1016/j.eururo.2012.02.054
Cohen LA. Nutrition and prostate cancer: a review. Ann NY Acad Sci 2002; 963: 148-55. http://dx.doi.org/10.1111/j.1749-6632.2002.tb04106.x
Jones BA, Liu W-L, Araujo AB, Kasl SV, Silvera SN, Soler-Vilaґ H, Curnen MGM, Dubrow R. Explaining the race difference in prostate cancer stage at diagnosis. Cancer Epidemiol Biomarkers Prev 2008; 17: 2825-34. http://dx.doi.org/10.1158/1055-9965.EPI-08-0203
Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun M J. Cancer statistics, 2003. CA Cancer J Clin 2003; 53: 5-26. http://dx.doi.org/10.3322/canjclin.53.1.5
Rebbeck TR. Conquering cancer disparities: new opportunities for cancer epidemiology, biomarker, and prevention research. Cancer Epidemiol Biomarkers Prev 2006; 15: 1569-71. http://dx.doi.org/10.1158/1055-9965.EPI-06-0613
Strahan RW. Carcinoma of the prostate: Incidence, origin, pathology. J Urol (Baltimore) 1963; 89(6): 875-80.
McNeal JE, Redwine EA, Freiha FS, Stamey TA. Zonal distribution of prostatic adenocarcinoma. Am J Surg Pathol 1988; 12: 897-906. http://dx.doi.org/10.1097/00000478-198812000-00001
Giovanucci E, Ascherio A, Rimm E, Stampfer M J, Colditz G A. Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 1995; 87: 1767-76. http://dx.doi.org/10.1093/jnci/87.23.1767
Michaud DS, Augustsson K, Rimm EB, Stampfer MJ, Willet WC, Giovannucci E. A prospective study on intake of animal products and risk of prostate cancer. Cancer Causes Control 2001; 12(6): 557-67. http://dx.doi.org/10.1023/A:1011256201044
Cross AJ, Peters U, Kirsh VA, Andriole GL, Reding D, Hayes RB, Sinha R. A prospective study of meat and meat mutagens and prostate cancer risk. Cancer Res 2005; 65(24): 11779-84. http://dx.doi.org/10.1158/0008-5472.CAN-05-2191
Walker M, Aronson KJ, King W, Wilson JW, Fan W, Heaton JP, MacNeily A, Nickel JC, Morales A. Dietary patterns and risk of prostate cancer in Ontario, Canada. Int J Cancer 2005; 116(4): 592-98. http://dx.doi.org/10.1002/ijc.21112
Stacewicz-Sapuntzakis M, Bowen PE, Borthakur G, Burns JL, Bowen PE. Correlations of dietary patterns with prostate health. Mol Nutr Food Res 2008; 52(1): 114-30. http://dx.doi.org/10.1002/mnfr.200600296
Bertrand G, Vladesco R. Intervention probable du zinc dans les phenomenes de fecundation chez les animaux vertebres. Compt Rend Acad Sci (Paris) 1921; 173: 176-80.
Zaichick V, Sviridova T, Zaichick S. Zinc in human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol 1997; 29(5): 565-74. http://dx.doi.org/10.1007/BF02552202
Zaichick V, Zaichick S. Role of zinc in prostate cancerogenesis. In: Mengen und Spurenelemente. 19. Arbeitstagung. Jena: Friedrich-Schiller-Universitat; 1999. pp.104-15.
Zaichick V. INAA and EDXRF applications in the age dynamics assessment of Zn content and distribution in the normal human prostate. J Radioanal Nucl Chem 2004; 262: 229-34. http://dx.doi.org/10.1023/B:JRNC.0000040879.45030.4f
Zaichick V, Zaichick S. INAA application in the assessment of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn mass fraction in pediatric and young adult prostate glands. J Radioanal Nucl Chem 2013, 298(3): 1559-66. http://dx.doi.org/10.1007/s10967-013-2554-3
Zaichick V, Zaichick S. NAA-SLR and ICP-AES Application in the assessment of mass fraction of 19 chemical elements in pediatric and young adult prostate glands. Biol Trace Elem Res 2013; 156(1): 357-66. http://dx.doi.org/10.1007/s12011-013-9826-1
Zaichick V, Zaichick S. Use of neutron activation analysis and inductively coupled plasma mass spectrometry for the determination of trace elements in pediatric and young adult prostate. American Journal of Analytical Chemistry 2013; 4: 696-706. http://dx.doi.org/10.4236/ajac.2013.412084
Hienzsch E, Schneider H-J, Anke M. Vergleichende Untersuchungen zum Mengen- und Spurenelementgehalt der normalen Prostata, des Prostataadenoms und des Prostatakarzinoms. Z Urol Nephrol 1970; 63: 543-46.
Leissner KM, Fielkegard B, Tisell LE. Concentration and content of zinc in human prostate. Invest Urol 1980; 18: 32-5.
Zaichick S, Zaichick V. Method and portable facility for energy-dispersive X-ray fluorescent analysis of zinc content in needle-biopsy specimens of prostate. X-Ray Spectrom 2010; 39: 83-9. http://dx.doi.org/10.1002/xrs.1233
Zaichick S, Zaichick V. The Br, Fe, Rb, Sr, and Zn contents and interrelation in intact and morphologic normal prostate tissue of adult men investigated by energy-dispersive X-ray fluorescent analysis. X-Ray Spectrom 2011; 40(6): 464-69. http://dx.doi.org/10.1002/xrs.1370
Zaichick S, Zaichick V. The effect of age on Ag, Co, Cr, Fe, Hg, Sb, Sc, Se, and Zn contents in intact human prostate investigated by neutron activation analysis. Appl Radiat Isot 2011; 69(6): 827-33. http://dx.doi.org/10.1016/j.apradiso.2011.02.010
Zaichick V, Nosenko S, Moskvina I. The effect of age on 12 chemical element contents in intact prostate of adult men investigated by inductively coupled plasma atomic emission spectrometry. Biol Trace Elem Res 2012; 147(1-3): 49-58. http://dx.doi.org/10.1007/s12011-011-9294-4
Zaichick S, Zaichick V, Nosenko S, Moskvina I. Mass Fractions of 52 Trace Elements and Zinc Trace Element Content Ratios in Intact Human Prostates Investigated by Inductively Coupled Plasma Mass Spectrometry. Biol Trace Elem Res 2012; 49(2): 171-83. http://dx.doi.org/10.1007/s12011-012-9427-4
Zaichick V, Zaichick S. INAA application in the assessment of chemical element mass fractions in adult and geriatric prostate glands. Appl Radiat Isot 2014; 90: 62-73. http://dx.doi.org/10.1016/j.apradiso.2014.03.010
Zaichick V, Zaichick S. Determination of trace elements in adults and geriatric prostate combining neutron activation with inductively coupled plasma atomic emission spectrometry. Open Journal of Biochemistry 2014; 1(2): 16-33.
Zaichick V, Zaichick S. Use of INAA and ICP-MS for the assessment of trace element mass fractions in adult and geriatric prostate. J Radioanal Nucl Chem 2014; 301(2): 383-97. http://dx.doi.org/10.1007/s10967-014-3173-3
Zaichick V. The variation with age of 67 macro- and microelement contents in nonhyperplastic prostate glands of adult and elderly males investigated by nuclear analytical and related methods. Biol Trace Elem Res 2015; 168(1): 44-60. http://dx.doi.org/10.1007/s12011-015-0342-3
Kerr WK, Keresteci AG, Mayon H. The distribution of zinc within the human prostate. Cancer 1960; 13(3): 550-54. http://dx.doi.org/10.1002/1097-0142(196005/06)13:3<550::AID-CNCR2820130320>3.0.CO;2-X
Györkey F, Min K-W, Huff JA, Györkey P. Zinc and magnesium in human prostate gland: Normal, hyperplastic, and neoplastic. Cancer Res 1967; 27, Part 1(8):1349-53.
Tisell LE, Fjelkegard B, Leissner KH. Zinc concentration and content of the dorsal, lateral and medial prostatic lobes and of periurethral adenomas in man. J Urol 1982; 128(2): 403-5.
Zaichick V, Tsyb A, Matveenko E, Chernichenko I. Instrumental neutron activation analysis of essential and toxic elements in the child and adolescent diets in the Chernobyl disaster territories of the Kaluga Region. Sci Total Environ 1996; 192(3): 269-74. http://dx.doi.org/10.1016/S0048-9697(96)05321-1
Deering RE, Choongkittaworn M, Bigler SA, Aramburu E, King J, Brawer MK. Morphometric quantitation of stroma in human benign prostatic hyperplasia. Urology 1994; 44: 64-7. http://dx.doi.org/10.1016/S0090-4295(94)80011-1
Zaichick V, Sviridova T, Zaichick S. Zinc concentration in human prostatic fluid: normal, chronic prostatitis, adenoma and cancer. Int Urol Nephrol 1996; 28(5): 687-94. http://dx.doi.org/10.1007/BF02552165
Zaichick S, Zaichick V. Relations of morphometric parameters to zinc content in paediatric and nonhyperplastic young adult prostate glands. Andrology 2013; 1(1): 139-46. http://dx.doi.org/10.1111/j.2047-2927.2012.00005.x
Zaichick V, Zaichick S. Relations of bromine, iron, rubidium, strontium, and zinc content to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Biol Trace Elem Res 2014; 157(3): 195-204. http://dx.doi.org/10.1007/s12011-014-9890-1
Zaichick V, Zaichick S. Relations of the Al, B, Ba, Br, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, and Zn mass fractions to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. BioMetals 2014; 27(2): 333-48. http://dx.doi.org/10.1007/s10534-014-9716-9
Zaichick V, Zaichick S. The distribution of 54 trace elements including zinc in pediatric and nonhyperplastic young adult prostate gland tissues. Journal of Clinical and Laboratory Investigation Updates 2014; 2(1): 1-15. http://dx.doi.org/10.14205/2310-9556.2014.02.01.1
Zaichick V, Zaichick S. Androgen-dependent chemical elements of prostate gland. Androl Gynecol: Curr Res 2014; 2(2).
Zaichick V, Zaichick S. Age-related histological and zinc content changes in adult nonhyperplastic prostate glands. Age 2014; 36(1): 167-81. http://dx.doi.org/10.1007/s11357-013-9561-8
Costello LC, Franklin RB. Zinc is decreased in prostate cancer: an established relationship of prostate cancer. J Biol Inorg Chem 2011; 16(1): 3-8. http://dx.doi.org/10.1007/s00775-010-0736-9
Banas A, Banas K, Kwiatek WM, Gajda M, Pawlicki B, Cichocki T. Neoplastic disorders of prostate glands in the light of synchrotron radiation and multivariate statistical analysis. J Biol Inorg Chem 2011; 16(8): 1187-96. http://dx.doi.org/10.1007/s00775-011-0807-6
Avtandilov GG. Morphometry in pathology, Moscow: Medicina; 1973.
Mackenzie AR, Hall T, Whitmore WFJr. Zinc content of expressed human prostate fluid. Nature 1962; 193(4810): 72-3. http://dx.doi.org/10.1038/193072a0
Fair WR, Cordonnier JJ. The pH of prostatic fluid: A reappraisal and therapeutic implications. J Urol 1978; 120(6): 695-98.
Kavanagh JP. Zinc binding properties of human prostatic tissue, prostatic secretion and seminal fluid. J Reprod Fert 1983; 68(2): 359-63. http://dx.doi.org/10.1530/jrf.0.0680359
Gómes Y, Arocha F, Espinoza F, Fernandez D, Vásquez A, Granadillo V. Niveles de zinc en líquido prostático de pacientes con patologías de próstata. Invest Clin 2007; 48(3): 287-94.
Costello LC, Franklin RB. Prostatic fluid electrolyte composition for the screening of prostate cancer: a potential solution to a major problem. Prostate Cancer Prostate Dis 2009; 12(1): 17-24. http://dx.doi.org/10.1038/pcan.2008.19
Costello LC, Franklin RB. Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate 1998; 35: 285-96. http://dx.doi.org/10.1002/(SICI)1097-0045(19980601)35:4<285::AID-PROS8>3.0.CO;2-F
Kolenko V, Teper E, Kutikov A, Uzzo R. Zinc and zinc transporters in prostate carcinogenesis. Nat Rev Urol 2013; 10: 219-26. http://dx.doi.org/10.1038/nrurol.2013.43
Ide-Ektessabi A, Fujisawa F, Sugiruma K, Kitamura Y, Gotoh A. Quantitative analysis of zinc in prostate cancer tissue using synchrotron radiation microbeams. X-Ray Spectrom 2002; 31: 7-11. http://dx.doi.org/10.1002/xrs.532
Iyengar GV. Reevaluation of the trace element content in reference men. Radiat Phys Chem 1998; 51: 545-60. http://dx.doi.org/10.1016/S0969-806X(97)00202-8
Bozym RA, Chimienti F, Giblin LJ, Gross GW, Korichneva I, Li Y, Libert S, Maret W, Parviz M, Frederickson CJ, Thompson RB. Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp Biol Med (Maywood) 2010; 235(6): 741-50. http://dx.doi.org/10.1258/ebm.2010.009258
Schwartz MK. Role of trace elements in cancer. Cancer Res 1975; 35: 3481-87.
Matusik RJ, Kreis C, McNicol P, Sweetland R, Mullin C, Fleming WH, Dodd JG. Regulation of prostatic genes: role of androgens and zinc in gene expression. Biochem Cell Biol 1986; 64: 601-7. http://dx.doi.org/10.1139/o86-083
Blok LJ, Grossmann ME, Perry JE, Tindall DJ. Characterization of an early growth response gene, which encodes a zinc finger transcription factor, potentially involved in cell cycle regulation. Mol Endocrinol 1995; 9(11): 1610-20.
Zezerov YeG. Hormonal and molecular-biological factors of prostate cancer pathogenesis. Voprosy Oncologii 2001; 47(2): 174-81.
Truong-Tran AQ, Ho LH, Chai F, Zalewski PD. Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death. J Nutr 2000; 130(5S Suppl): 1459S-66S.
Kontargiris E, Vadalouka A, Ragos V, Kalfakakou V. Zinc inhibits apoptosis and maintains NEP downregulation, induced by Ropivacaine, in HaCaT cells. Biol Trace Elem Res 2012; 150: 460-6. http://dx.doi.org/10.1007/s12011-012-9492-8
Liang D, Yang M, Guo B, Cao J, Yang L, Guo X, Li Y, Gao Z. Zinc inhibits H2O2-induced MC3T3-E1 cells apoptosis via MAPK and PI3K/AKT pathways. Biol Trace Elem Res 2012; 148: 420-9. http://dx.doi.org/10.1007/s12011-012-9387-8
Zhang X, Liang D, Guo B, Yang L, Wang L, Ma J. Zinc inhibits high glucose-induced apoptosis in peritoneal mesothelial cells. Biol Trace Elem Res 2012; 150: 424-32. http://dx.doi.org/10.1007/s12011-012-9473-y
Denmeade SR, Isaacs JT. A history of prostate cancer treatment. Nat Rev Cancer 2002; 2(5): 389-96. http://dx.doi.org/10.1038/nrc801