Emerging Therapeutics for Radioiodide-Refractory Thyroid Cancer


  • Juan Pablo Nicola Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
  • Ana María Masini-Repiso Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina




Radioiodide therapy, sodium iodide symporter, radioiodide-refractory thyroid cancer, MAPK pathway inhibitors, multi-targeted tyrosine kinase inhibitors.


 Although uncommon, thyroid cancer constitutes the main endocrine neoplasia with an incidence rate that has been increasing steadily over the past decades. Recently, remarkable advances have occurred in understanding the biology of thyroid cancer. Novel germline and somatic point mutations as well as somatic chromosomal rearrangements associated with thyroid carcinogenesis have been discovered. Strikingly, acquired knowledge in the genetics of thyroid cancer has been translated into clinical practice, offering better diagnostic and prognostic accuracy and enabling the development of novel compounds for the treatment of advanced thyroid carcinomas.

Even after 70 years, radioiodide therapy remains as the central treatment for advanced or metastatic differentiated thyroid cancer. However, the mechanisms leading to reduced radioiodide accumulation in the tumor cell remain partially understood. Radioiodide-refractory thyroid cancer metastasis constitutes a central problem in the management of thyroid cancer patients. In recent years, the antiangiogenic tyrosine kinase inhibitors sorafenib and lenvatinib have been approved for the treatment of advanced radioiodide-refractory thyroid carcinoma. Moreover, still on clinical phase of study, oncogene-specific and oncogene-activated signaling inhibitors have shown promising effects in recovering radioiodide accumulation in radioiodide-refractory thyroid cancer metastasis. Further clinical trials of these therapeutic agents may soon change the management of thyroid cancer.

This review summarizes the latest advances in the understanding of the molecular basis of thyroid cancer, the mechanisms leading to reduced radioiodide accumulation in thyroid tumors and the results of clinical trials assessing emerging therapeutics for radioiodide-refractory thyroid carcinomas in the era of targeted therapies.


La Vecchia C, Malvezzi M, Bosetti C, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer 2015; 136: 2187-2195. http://dx.doi.org/10.1002/ijc.29251

Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74: 2913-2921. http://dx.doi.org/10.1158/0008-5472.CAN-14-0155

Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006; 91: 2892-2899. http://dx.doi.org/10.1210/jc.2005-2838

Smallridge RC, Copland JA. Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol 2010; 22: 486-497. http://dx.doi.org/10.1016/j.clon.2010.03.013

Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014; 159: 676-690. http://dx.doi.org/10.1016/j.cell.2014.09.050

Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun 2014; 5: 4846. http://dx.doi.org/10.1038/ncomms5846

Garcia-Rendueles ME, Ricarte-Filho JC, Untch BR, et al. NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition. Cancer Discov 2015; 5: 1178-1193. http://dx.doi.org/10.1158/2159-8290.CD-15-0330

Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol 2015; 33: 42-50. http://dx.doi.org/10.1200/JCO.2014.56.8253

Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013; 309: 1493-1501. http://dx.doi.org/10.1001/jama.2013.3190

Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 2009; 69: 4885-4893. http://dx.doi.org/10.1158/0008-5472.CAN-09-0727

Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, Nistal M, Santisteban P. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocr Relat Cancer 2006; 13: 257-269. http://dx.doi.org/10.1677/erc.1.01119

Xing M, Liu R, Liu X, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol 2014; 32: 2718-2726. http://dx.doi.org/10.1200/JCO.2014.55.5094

Gara SK, Jia L, Merino MJ, et al. Germline HABP2 Mutation Causing Familial Nonmedullary Thyroid Cancer. N Engl J Med 2015; 373: 448-455. http://dx.doi.org/10.1056/NEJMoa1502449

Castro P, Rebocho AP, Soares RJ, et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 2006; 91: 213-220. http://dx.doi.org/10.1210/jc.2005-1336

Liu D, Yang C, Bojdani E, Murugan AK, Xing M. Identification of RASAL1 as a major tumor suppressor gene in thyroid cancer. J Natl Cancer Inst 2013; 105: 1617-1627. http://dx.doi.org/10.1093/jnci/djt249

Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 2010; 20: 697-706. http://dx.doi.org/10.1089/thy.2010.1646

Santarpia L, El-Naggar AK, Cote GJ, Myers JN, Sherman SI. Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab 2008; 93: 278-284. http://dx.doi.org/10.1210/jc.2007-1076

Fagin JA, Matsuo K, Karmakar A, et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 1993; 91: 179-184. http://dx.doi.org/10.1172/JCI116168

Garcia-Rostan G, Tallini G, Herrero A, et al. Frequent muta-tion and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res 1999; 59: 1811-1815.

McFadden DG, Vernon A, Santiago PM, et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc Natl Acad Sci U S A 2014; 111: E1600-1609. http://dx.doi.org/10.1073/pnas.1404357111

Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 2016. http://dx.doi.org/10.1172/JCI85271

Karunamurthy A, Panebianco F, Hsiao S, et al. Prevalence and phenotypic characteristics of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer 2016. http://dx.doi.org/10.1530/ERC-16-0043

Cibas ES, Ali SZ. The Bethesda System For Reporting Thy-roid Cytopathology. Am J Clin Pathol 2009; 132: 658-665. http://dx.doi.org/10.1309/AJCPPHLWMI3JV4LA

Nikiforov YE, Carty SE, Chiosea SI, et al. Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid 2015.

Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26: 1-133. http://dx.doi.org/10.1089/thy.2015.0020

Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006; 91: 2892-2899. http://dx.doi.org/10.1210/jc.2005-2838

Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994; 97: 418-428. http://dx.doi.org/10.1016/0002-9343(94)90321-2

Sciuto R, Romano L, Rea S, et al. Natural history and clinical outcome of differentiated thyroid carcinoma: a retrospective analysis of 1503 patients treated at a single institution. Ann Oncol 2009; 20: 1728-1735. http://dx.doi.org/10.1093/annonc/mdp050

Nicola JP, Carrasco N, Amzel LM. Physiological sodium concentrations enhance the iodide affinity of the Na(+)/I(-) symporter. Nat Commun 2014; 5: 3948. http://dx.doi.org/10.1038/ncomms4948

Wapnir IL, van de Rijn M, Nowels K, et al. Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections. J Clin Endocrinol Metab 2003; 88: 1880-1888. http://dx.doi.org/10.1210/jc.2002-021544

Dohan O, Baloch Z, Banrevi Z, Livolsi V, Carrasco N. Predominant intracellular overexpression of the Na(+)/I(-) symporter (NIS) in a large sampling of thyroid cancer cases. J Clin Endocrinol Metab 2001; 86: 2697-2700. http://dx.doi.org/10.1210/jc.86.6.2697

Kollecker I, von Wasielewski R, Langner C, et al. Subcellular distribution of the sodium iodide symporter in benign and malignant thyroid tissues. Thyroid 2012; 22: 529-535. http://dx.doi.org/10.1089/thy.2011.0311

Chun JT, Di Dato V, D'Andrea B, Zannini M, Di Lauro R. The CRE-like element inside the 5'-upstream region of the rat sodium/iodide symporter gene interacts with diverse classes of b-Zip molecules that regulate transcriptional activities through strong synergy with Pax-8. Mol Endocrinol 2004; 18: 2817-2829. http://dx.doi.org/10.1210/me.2004-0020

Riedel C, Levy O, Carrasco N. Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin. J Biol Chem 2001; 276: 21458-21463. http://dx.doi.org/10.1074/jbc.M100561200

Borget I, Bonastre J, Catargi B, et al. Quality of Life and Cost-Effectiveness Assessment of Radioiodine Ablation Strategies in Patients With Thyroid Cancer: Results From the Randomized Phase III ESTIMABL Trial. J Clin Oncol 2015; 33: 2885-2892. http://dx.doi.org/10.1200/JCO.2015.61.6722

Maxon HR, Smith HS. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am 1990; 19: 685-718.

Castro MR, Bergert ER, Goellner JR, Hay ID, Morris JC. Immunohistochemical analysis of sodium iodide symporter expression in metastatic differentiated thyroid cancer: correlation with radioiodine uptake. J Clin Endocrinol Metab 2001; 86: 5627-5632. http://dx.doi.org/10.1210/jcem.86.11.8048

Venkateswaran A, Marsee DK, Green SH, Jhiang SM. Forskolin, 8-Br-3',5'-cyclic adenosine 5'-monophosphate, and catalytic protein kinase A expression in the nucleus increase radioiodide uptake and sodium/iodide symporter protein levels in RET/PTC1-expressing cells. J Clin Endocrinol Metab 2004; 89: 6168-6172. http://dx.doi.org/10.1210/jc.2004-1414

Baratta MG, Porreca I, Di Lauro R. Oncogenic ras blocks the cAMP pathway and dedifferentiates thyroid cells via an impairment of pax8 transcriptional activity. Mol Endocrinol 2009; 23: 838-848. http://dx.doi.org/10.1210/me.2008-0353

Riesco-Eizaguirre G, Rodriguez I, De la Vieja A, et al. The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res 2009; 69: 8317-8325. http://dx.doi.org/10.1158/0008-5472.CAN-09-1248

Costamagna E, Garcia B, Santisteban P. The functional interaction between the paired domain transcription factor Pax8 and Smad3 is involved in transforming growth factor-beta repression of the sodium/iodide symporter gene. J Biol Chem 2004; 279: 3439-3446. http://dx.doi.org/10.1074/jbc.M307138200

Riesco-Eizaguirre G, Wert-Lamas L, Perales-Paton J, et al. The miR-146b-3p/PAX8/NIS Regulatory Circuit Modulates the Differentiation Phenotype and Function of Thyroid Cells during Carcinogenesis. Cancer Res 2015; 75: 4119-4130. http://dx.doi.org/10.1158/0008-5472.CAN-14-3547

Nicola JP, Nazar M, Mascanfroni ID, Pellizas CG, Masini-Repiso AM. NF-kappaB p65 subunit mediates lipopolysaccharide-induced Na(+)/I(-) symporter gene expression by involving functional interaction with the paired domain transcription factor Pax8. Mol Endocrinol 2010; 24: 1846-1862. http://dx.doi.org/10.1210/me.2010-0102

Nicola JP, Peyret V, Nazar M, et al. S-Nitrosylation of NF-kappaB p65 Inhibits TSH-Induced Na(+)/I(-) Symporter Expression. Endocrinology 2015; 156: 4741-4754. http://dx.doi.org/10.1210/en.2015-1192

Smith VE, Read ML, Turnell AS, et al. A novel mechanism of sodium iodide symporter repression in differentiated thyroid cancer. J Cell Sci 2009; 122: 3393-3402. http://dx.doi.org/10.1242/jcs.045427

Smith VE, Sharma N, Watkins RJ, et al. Manipulation of PBF/PTTG1IP phosphorylation status; a potential new therapeutic strategy for improving radioiodine uptake in thyroid tumors. J Clin Endocrinol Metab 2013; 98: 2876-2886. http://dx.doi.org/10.1210/jc.2012-3640

Darrouzet E, Graslin F, Marcellin D, et al. A systematic evaluation of sorting motifs in the sodium/iodide symporter (NIS). Biochem J 2016. http://dx.doi.org/10.1042/BJ20151086

Paroder V, Nicola JP, Ginter CS, Carrasco N. The iodide-transport-defect-causing mutation R124H: a delta-amino group at position 124 is critical for maturation and trafficking of the Na+/I- symporter. J Cell Sci 2013; 126: 3305-3313. http://dx.doi.org/10.1242/jcs.120246

Nicola JP, Reyna-Neyra A, Saenger P, et al. Sodium/Iodide Symporter Mutant V270E Causes Stunted Growth but No Cognitive Deficiency. J Clin Endocrinol Metab 2015; 100: E1353-1361. http://dx.doi.org/10.1210/jc.2015-1824

Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014; 384: 319-328. http://dx.doi.org/10.1016/S0140-6736(14)60421-9

Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015; 372: 621-630. http://dx.doi.org/10.1056/NEJMoa1406470

Worden F, Fassnacht M, Shi Y, et al. Safety and tolerability of sorafenib in patients with radioiodine-refractory thyroid cancer. Endocr Relat Cancer 2015; 22: 877-887. http://dx.doi.org/10.1530/ERC-15-0252

Sherman SI, Wirth LJ, Droz JP, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 2008; 359: 31-42. http://dx.doi.org/10.1056/NEJMoa075853

Cohen EE, Rosen LS, Vokes EE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol 2008; 26: 4708-4713. http://dx.doi.org/10.1200/JCO.2007.15.9566

Bible KC, Suman VJ, Molina JR, et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol 2010; 11: 962-972. http://dx.doi.org/10.1016/S1470-2045(10)70203-5

Hayes DN, Lucas AS, Tanvetyanon T, et al. Phase II efficacy and pharmacogenomic study of Selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements. Clin Cancer Res 2012; 18: 2056-2065. http://dx.doi.org/10.1158/1078-0432.CCR-11-0563

Chakravarty D, Santos E, Ryder M, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest 2011; 121: 4700-4711. http://dx.doi.org/10.1172/JCI46382

Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013; 368: 623-632. http://dx.doi.org/10.1056/NEJMoa1209288

Dadu R, Shah K, Busaidy NL, et al. Efficacy and tolerability of vemurafenib in patients with BRAF(V600E)-positive papillary thyroid cancer. J Clin Endocrinol Metab 2015; 100: E77-81. http://dx.doi.org/10.1210/jc.2014-2246

Montero-Conde C, Ruiz-Llorente S, Dominguez JM, et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov 2013; 3: 520-533. http://dx.doi.org/10.1158/2159-8290.CD-12-0531

Rothenberg SM, McFadden DG, Palmer EL, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res 2015; 21: 1028-1035. http://dx.doi.org/10.1158/1078-0432.CCR-14-2915

Leboulleux S, Bastholt L, Krause T, et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol 2012; 13: 897-905. http://dx.doi.org/10.1016/S1470-2045(12)70335-2

Wagle N, Grabiner BC, Van Allen EM, et al. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N Engl J Med 2014; 371: 1426-1433. http://dx.doi.org/10.1056/NEJMoa1403352

Liu R, Liu D, Trink E, et al. The Akt-specific inhibitor MK2206 selectively inhibits thyroid cancer cells harboring mutations that can activate the PI3K/Akt pathway. J Clin Endocrinol Metab 2011; 96: E577-585. http://dx.doi.org/10.1210/jc.2010-2644

Rosove MH, Peddi PF, Glaspy JA. BRAF V600E inhibition in anaplastic thyroid cancer. N Engl J Med 2013; 368: 684-685. http://dx.doi.org/10.1056/NEJMc1215697




How to Cite

Juan Pablo Nicola, & Ana María Masini-Repiso. (2016). Emerging Therapeutics for Radioiodide-Refractory Thyroid Cancer. Journal of Analytical Oncology, 5(2),  75–86. https://doi.org/10.6000/1927-7229.2016.05.02.5