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Abstract: Tumor microenvironment, known to exert regulatory functions on tumor cells, plays an important role when a 
human tumor is xenografted into immunodeficient mice. Primary human tumors xenografts represent a promising 
strategy to study new therapeutic’s efficacy or to understand the mechanisms implicated in tumor relapse.  

The development of xenografts is linked not only to the aggressivity of the tumor cells, but also to the tumor 
microenvironment. Tumor xenograft cell proliferation is dependent on microenvironment modifications such as 
angiogenesis and human blood vessel replacement, host immune cells and the presence of growth factors. 

The characterisation and a better knowledge of these factors allow for a more appropriate use of xenograft animal 
models in the evaluation of new antitumor treatments.  

In this review, we describe the different factors linked to the tumor microenvironment and their impact on the take rate 

when human tumors are xenografted into immunodeficient mice. 
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stroma. 

INTRODUCTION 

Human tumor microenvironment in which tumor 

cells develop is composed of blood microvessels, 

fibroblasts and inflammatory cells (macrophages and 

lymphocytes). Around these components is found an 

extracellular matrix composed of fibers, proteoglycans, 

non-proteoglycans polysaccharides, growth factors, 

proteases, cytokines, chemokines antibody and other 

types of enzymes [1]. The stromal microenvironment 

plays a crucial role in tumorigenesis, especially in 

tumor progression and the aggressiveness of cancer 

cells, and is dependent on the interactions with immune 

components. Thus, tumor microenvironment exerts 

regulatory functions and selective pressure on cancer 

cells and determines the ability of the tumor to invade 

surrounding tissues [1]. 

The characterization of immune components in the 

tumor environment such as T-cell [2], B-cells [3], NK-

cells [4] and macrophages [5] have shown their 

capability to infiltrate solid tumors. 
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Tumor proliferation is dependent upon blood supply 

and the interactions of tumor and endothelial cells 

initiate and drive this process. The growth of new 

capillaries from existing blood vessels, which is called 

angiogenesis, is mediated by a complex multistep 

process comprising a series of cellular events that lead 

to neovascularisation [6]. Angiogenesis plays a central 

role in various physiological processes within human 

body and has been found essential for tumor growth 

and is also a key factor in metastasis. It is due to the 

migration, proliferation and differentiation of endothelial 

cells under the influence of angiogenic factors secreted 

by tumor cells and stromal cells [7]. 

The use of preclinical models of human tumor 

xenografts implies changes in part of these 

interactions. The principle of the xenograft is based on 

the implantation of human tumor tissue either in 

subcutaneous position [8] or in an orthotopic (natural) 

site [9, 10] (Figure 1). For subcutaneous models, the 

tumor xenograft is implanted between the dermis and 

underlying muscle and is typically located either on the 

flank, or into the footpad or on the back into the brown 

fat of the mouse. 

The major disadvantage of this technique that 

sometimes fails may be due to the observation that the 
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subcutaneous microenvironment is not relevant to the 

organ site of primary or metastatic disease. Human 

tumor xenografts which are implanted orthotopically 

can reproduce the organ environment in which the 

tumor grows, so that the effect of the tumor on its 

microenvironment can be modulated [11]. In this 

model, the tumor xenograft is either implanted or 

injected into the equivalent organ from which the 

cancer originated, or where metastases are found in 

patients [12]. To avoid xenorejection and allow an 

efficient transplantation, nude athymic (nu/nu) or 

severe combined immunodeficient (scid/scid) mice are 

used. Human tumor tissue can be then serially 

transplanted into mice. To avoid any infection and 

contamination, mice are handled under aseptic 

conditions including the wearing of gloves, gowns and 

shoe coverings. 

Primary human tumor xenografted into 

immunodeficient mice represents a promising modality 

to study the therapeutic efficacy of new drugs [13, 14], 

associations of drugs and mechanisms of molecular or 

cellular response to treatment [15]. 

The xenograft method shows both advantages and 

disadvantages. Among the advantages, the tumor 

xenografts are 1) easy to use, 2) relatively inexpensive 

comparing to genetic modified murine models [16], 3) 

able to reproduce the heterogeneity of the initial patient 

tumor, thereby allowing the study of tumor cell 

subpopulations [17, 4] potentially proposed as a 

personalized therapeutic to anticipate personalized 

anticancer treatment [18-20]. 

Among the disadvantages, we can mention that 1) 

to allow xenotransplantation, immunodeficient mice are 

used and therefore, the important interactions between 

the different types of immune cells and cancer cells 

during tumor initiation and maintenance are excluded 

[17] and 2) a selection pressure is induced by the host 

animal, and the human stroma are gradually lost [21]. 

The differences observed are probably due to changes 

in tumor microenvironment resulting from engraftment 

in immunocompromised mice [22]. Tumor 

microenvironment is characterized by properties such 

as low extracellular pH, low glucose concentration, 

necrosis and hypoxia, known to induce genetic 

 

Figure 1: Principe of human tumor xenograft into immunodeficient mice. After resection, human tumor tissue can be 
xenografted into immunodeficient mice after tissue dissociation either as cell suspension or as small solid tumors specimen. 
Serial passages can be thus established into mice. The human tumor initially grafted into mice contains a heterogeneous 
population of tumor cells, tumor stem cells, inflammatory cells, blood vessels as well as fibroblast and extracellular matrix. 
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instability and alteration in gene expression in tumors 

cells [1]. 

When human tumors are grafted into animals, the 

tumor microenvironment is influenced by different 

factors, among them being the human tumor stroma, 

the mouse strain, the site of xenografts, and the 

progressive human blood vessels replacement. These 

factors could induce phenotypic and genotypic 

modifications on tumors cells. In the next sections the 

role of these different factors will be discussed.  

1. Human Stroma Versus Mouse Stroma  

Human stroma is replaced with murine stroma 

during successive passages of the tumors within mice 

and could alter the original composition of the tumor 

[17, 22]. Stromal microenvironment modifications such 

as angiogenesis, inflammatory cells, extracellular 

matrix composition, and expression of growth factors in 

the stromal compartment influence progression of 

tumor cells. 

Some differences observed in gene expression 

breast cancer xenografts seem to be due to the loss of 

human stromal genes [21]. Modifications on tumor 

stroma were also observed by other teams. Thus, 

Chou et al. showed in the colorectal cancer xenografts, 

that the human stroma, vasculature, and hematopoietic 

elements were systematically replaced by murine 

analogues while the carcinoma component persisted 

[23]. 

Stromal microenvironment is thus a determinant for 

a malignant growth. Alteration in the stromal 

microenvironment in a rat model was sufficient to 

promote malignant transformation of human prostatic 

epithelial cells appearance of carcinoma-associated 

fibroblasts (CAFs), and was associated with additional 

genetic alterations and changes in gene expression 

[24, 25]. 

2. Mouse Strain 

Xenograft tumor models were developed 

extensively after the identification of athymic nude 

mutant mouse with a deletion in the FOXN1 gene [26]. 

Lack of the thymus in homozygotes nude mice leads to 

defect in the immune system, such as T lymphocytes 

(Figure 2). In these mice the lymphocyte population is 

composed almost entirely of B-cells. Intact humoral 

immunity in nude mice reduces the efficiency of tumor 

formation after xenografts. These mouse strains have 

proven to be useful for the establishment of xenograft 

tumors both from patient’s tumor samples and 

established human cancer cell lines [27, 28]. 

The SCID mouse harbours a point mutation in 

chromosome 16 in the CB-17 inbred mouse strain 

showing defects in DNA repair. This results in the 

interruption of lymphocyte maturation and a deficit in 

circulating, mature, functional T and B-cells. However, 

these mouse strains possess an intact innate immune 

system with normal numbers of monocytes/ 

macrophages, natural killer (NK) cells and granulocytes 

leading sometimes to elimination of tumor xenografted 

cells over time [29]. SCID/Bg mice lack B-cell, T-cell, 

and NK cell function entirely, but show enhanced 

macrophage populations [30-32] (Figure 2). SCID mice 

with mutations in the Il2r  locus have significantly 

improved the survival of human tissues such as 

peripheral blood monocytes, hematopoietic cells [33] 

and diverse tumor cell types such as lung [34] or 

ovarian tumor xenografts [26, 33]. 

The SCID mouse harbours a point mutation in 

chromosome 16 in the CB-17 inbred mouse strain 

showing defects in DNA repair. As results is the 

interruption of lymphocyte maturation and a deficit in 

circulating, mature, functional T and B-cells. However, 

these mouse strains possess an intact innate immune 

system with normal numbers of monocytes/ 

macrophages, natural killer (NK) cells and granulocytes 

leading sometimes to elimination of xenografted tumor 

cells over time [29]. SCID/Bg mice lack B-cell, T-cell, 

and NK cell function entirely, but show enhanced 

macrophage populations [30-32] (Figure 2). SCID mice 

with mutations in the Il2r  locus have significantly 

improved the survival of human tissues such as 

peripheral blood monocytes, hematopoietic cells [33] 

and diverse tumor cell types such as lung [34] or 

ovarian tumor xenografts [26, 33]. 

Experiments using the SCID mice have 

demonstrated that engraftment of a human tumor 

microenvironment is preserved for a limited period of 

time [29, 33, 35]. 

3. Site of Xenograft 

The site of implantation is important because of the 

microenvironment. Subcutaneous engraftment allows 

easy assessment of tumor size but does not replicate 

the natural tumor microenvironment, which contributes 

to tumor progression and could modulate therapeutic 

response [17]. Thus, the main limit of subcutaneous 

engraftment is the lack or reduced potential of 
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metastasis compared to orthotopic sites where an 

increased rate was observed [36] (Figure 2). 

Orthotopic tumor xenograft models provide a more 

biologically relevant context to study the disease and 

tumor-host interactions. Orthotopic transplantation 

models may mimic the biologic behaviour of the 

primary tumor but this procedure is more difficult to 

perform [37]. Some studies have demonstrated that the 

orthotopic implantation of human tumor show a 

superior growth and metastasis as compared to 

subcutaneous position. This capacity of metastasis of 

implanted tumors cells into mice depends also on the 

properties of tumor cells [38]. 

A modality for mimicking human tumor 

microenvironment is to humanize mice models [39, 40]. 

Thus, in order to reproduce a natural microenvironment 

researchers either administered low doses of estradiol 

to mice [32, 41] or "humanized" the mammary fat pad 

of mice with immortalized human fibroblast [42, 43]. 

Human breast tumors, expressing or not expressing 

estrogens receptor (ER
+ 

or ER )
 
grown in the fat pad of 

severe combined immunodeficient SCID/Beige and 

non-obese diabetic (NOD)/SCID /IL2-receptor null 

(NSG) mice, yielded stably transplantable xenografts at 

rates of 21% and 19%, respectively [32]. Primary 

outgrowth and stable take rate in these mice were not 

statistically different under estradiol supplementation. 

ER  and ER
+
 xenografts were propagated in the 

presence of estradiol pellets suggesting that estradiol 

supplementation stimulates growth of breast cancer 

xenografts. ER
+
 tumor graft remained dependent on 

estrogen for tumor growth. The stimulatory effect of 

estradiol on ER
-
 tumor growth at least could due to an 

ER -mediated effect on bone marrow-derived myeloid 

cells that promote angiogenesis and tumor growth [32, 

44]. 

High take rate was also observed by DeRose et al., 

using Matrigel coated tumor tissue and implanted into 

the epithelium-free fat pad of NOD/SCID mice 

supplemented with estradiol [41]. Kuperwasser et al. 

have developed a protocol for the establishment of 

human mammary stroma within the mouse mammary 

fat pad. The "humanizing" of the mammary fat pad of 

mice by introducing immortalized human fibroblast cell 

line before transplantation, showed an increased 

efficiency of xenografting into NOD/SCID mice. Their 

results showed that stroma provide a proper 

 

Figure 2: Advantages (+) and disadvantages (-) of tumor xenograft depending on the site of engraftment and characteristics of 
mouse strain used for xenograft procedure. 
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environment for the development of human mammary 

epithelium [45]. This model is applied for understanding 

normal human breast development or breast 

tumorigenesis [42]. Fibroblasts contribute to the 

maintenance of the structural framework of most 

tissues. Human sub-peritoneal fibroblasts and cancer 

cells interactions create microenvironment enhancing 

tumor progression and metastasis of human colorectal 

cancer cells when injected subcutaneously into SCID 

mice [43]. 

4. Tumor Xenograft Stability  

When human tumor is xenografted into mice, the 

tumor tissue undergoes a selective pressure of tumor 

cells induced by the new environment. The validity of 

xenograft studies is highly dependent on the 

phenotypic and genotypic stability of the models. A 

fundamental assumption in using human tumor 

xenografts as model for preclinical anticancer drug 

development is that the xenograft closely resembles 

the corresponding primary tumor. 

Previous studies have analyzed the similarity of 

xenograft models to primary tumors by comparing 

specific biological phenotypes of the primary tumor, 

such as tumorigenicity [46], tumor volume [47] or DNA 

index [48]. 

Current genome profiling studies indicate the 

retention of molecular characteristics that define tumor 

type. The study by Whiteford et al. [49] using analysis 

of cDNA-expression profiles demonstrates that, 

xenografts derived can cluster accurately with their 

human counterparts. Similarly, direct comparison of 

patient tumor biopsy tissue with early-passage 

xenografts demonstrates high concordance in gene 

expression and even greater similarity in genomic 

alterations when tumors are propagated in mice. 

Genomic and phenotypic stability between patient 

tumor tissue and corresponding xenograft was studied 

in different lesions such as oesophageal and gastro-

esophageal junction [50], breast [32, 51], lung [52], 

kidney [9], gynecological tumors [53], uveal melanoma 

[54] and colorectal cancer [23]. 

We have demonstrated that the xenograft models of 

aggressive human RCC are clinically relevant, showing 

a good histological and molecular stability and are 

suitable for studies of basic biology and response to 

therapy [55]. 

Cancer involves dynamic changes in the genome, is 

the result of several complex events and it is 

characterized by uncontrolled cell proliferation. Its 

development is dependent not only on the changes 

occurring within the transformed cells, but also on the 

interactions of the cells with their microenvironment. 

The majority of our current understanding of 

carcinogenesis comes from the in vitro analysis of late-

stage tumor tissue removed from cancer patients. 

While this has elucidated many genomic changes 

experienced by cancer cells, it provides little 

information about the factors influencing early-stage 

cancer development in vivo. 

The stability of the ranking between model system 

and primary tumor therefore suggests that the 

xenograft gene expression database is an effective tool 

also for marker discovery. 

5. Human Blood Vessels Replacement 

The production of angiogenic factors in the local 

microenvironment of tumors contributes to the 

development of a vascular network with immature 

microvessels. It has been suggested that implanted 

tumors may vary in the degree to which the original 

human vasculature survives [56-58]. In the human 

tumors engrafted into immunodeficient mice, the 

human vessels as part of the original tumor did not 

survive and were no longer detectable at the time of 

first passage (15-25 weeks). Thus, after passage, the 

vessels supporting the growth of these tumors are of 

murine origin. The loss of the human vessels and 

vascularization by host vessels occurred more rapidly 

in a colon tumor (by 3 weeks) than in a mesothelioma 

(by 9 weeks), this replacement being dependent upon 

the tumor type [59]. These results support that the 

successful engraftment and growth of patient tumor 

xenografts depends on recruitment of new vessels from 

the murine host [59]. In subcutaneous xenografts of 

prostate and renal cell carcinoma studies, 80% of the 

vessels in primary xenografts of benign and malignant 

tissue of both organs were lined with human 

endothelial cells through a 30-day study period [56]. A 

similar study on colorectal cancer xenografts found that 

the human vasculature rapidly disappeared from 

growing colorectal xenografts. So, that by day 10, 50% 

of the vasculature was murine, by day 20, it was 

predominantly murine and by day 30, no human 

vessels were detectable [57]. The fate of the human 

vessels into the tumor xenograft is related to individual 

tumor types and the time point at which the engrafted 

specimens are examined. The regulation of the 

angiogenic process and molecular mechanisms that 

determine persistence or disappearance of human 
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endothelial cells in tumor contexts is different. Thus 

after implantation of human renal cell and prostate 

carcinoma primary xenografts from biopsy specimens, 

human endothelial cells were rapidly substituted by 

their murine counterparts (nearly 50% by day 10 after 

implantation [57]. Prostate cancer primary xenografts 

transplanted into athymic nude mice showed that the 

majority of the vessels were lined with human 

endothelial cells through the day 30 [56], while in other 

primary xenografts of fresh surgical specimens prostate 

cancer tissue the burst of angiogenesis by endogenous 

human blood vessels occurs between days 6-14 after 

transplantation into SCID mice pre-implanted with 

testosterone pellets. In this model, the androgen 

mediated angiogenesis was induced by up-regulation 

of VEGF-A expression in the stromal compartment [60]. 

Some reports showed a kind of “mosaic” of vessels 

partially lined by human tumor cells [61] and “vascular 

mimicry” in which blood cells are seen in channels lined 

by tumor cells but not endothelial cells [62]. The 

evaluation of endothelial cell species (i.e. murine or 

human) on xenograft tumor is important also to 

evaluate response to therapy such as antiangiogenics 

[63]. The origin of endothelial cells has a direct impact 

on xenograft tumor growth and response to treatment 

with the chemotherapeutic drug cisplatin or with the 

anti-angiogenic drug sunitinib [64]. 

In conclusion, tumor xenograft proliferation is 

dependent not only on the aggressivity of the tumors 

cells but also on the human and mouse microenviron-

ment and its interaction with its components when 

engrafted into mice. 

The characterisation of the different factors related 

to tumor microenvironment may help to understand the 

role of each of them in the development of human 

tumor xenografts into immunodeficient mice. The 

knowledge of these factors could be a prerequisite to 

elaborate a human tumor-like animal models for the 

molecular studies of responses to human cell 

therapies. 
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