Multiple Primary Malignant Tumours

Sajad Ahmad Salati^{1,*}, Amjaad Alkhezzi², Mohammad Ahmed Elmuttalut³, Muhammad Munir Memon⁴ and Mushhood Memon⁵

Abstract: Two or more histologically distinct malignancies in one individual are termed as multiple primary malignant tumours (MPMT). The incidence of these cases has been rising over the past few decades, primarily due to improved methods for cancer screening, diagnosis, treatment, and follow-up. They can show up as metachronous lesions later on or synchronously with the index malignancy. The precise aetiology is still unknown; however, a number of epidemiological variables have been proposed as potential risk factors. Modern imaging techniques are very helpful in the diagnosing process. Physician awareness is essential in order to raise suspicions about the potential for MPMT and to conduct appropriate investigations. There are currently no universal protocols based on evidence; instead, management is empirical and dependent on the judgments made by interdisciplinary teams.

Keywords: Multiple primary malignant tumours, synchronous, metachronous, prognosis, survival, hormones.

INTRODUCTION

Cancer patients now have access to more sophisticated diagnostic and therapeutic options than they had a few decades ago, which has improved disease management, raised survival rates, and allowed for earlier cancer discovery. The number of long-term surviving patients has increased, and this has led to an increasing burden of a condition for which Billroth T., as early as 1889, coined the term "multiple primary malignant tumours" [1]. Since then, the phrase "multiple primary malignant tumours (MPMT)" has been widely used to describe two or more distinct primary malignancies that develop concurrently or successively at various sites in the same person, provided that none of the tumours is a metastasis, extension, or recurrence of the others [2,3].

METHODS

A literature review was carried out using the keywords "multiple primary malignant tumours "; "Multiple primary malignant neoplasms ", "multiple primary cancers", "synchronous"; "metachronous" in electronic databases like PubMed, PubMed Central, ResearchGate, Google Scholar, Semantic Scholar, and

Scopus. Individual keywords were used in the search together with a Boolean logic (AND) combination. The rationale behind the review was to gain insight into the definition, epidemiology, clinical presentation, management, and prognosis of MPMT in the light of the recent studies. Though no time limits were set but the articles that have been published in the English language between 2003 and 2023 were given preference due to their recency. Cross-references from earlier literature were used, if they had some academic or historical merit.

DEFINITION

Warren and Gates [4] first described this condition in detail in 1932, and they established the diagnostic criteria for it. A cancer must meet three requirements in order to be classified as an MPMT: it must be (1) distinct histologically, (2) definitively malignant, and (3) the possibility of metastasis must be ruled out. Warren and Gates [4] have categorized MPMTs synchronous or metachronous based on their appearance timeline. The terms "synchronous" or "contemporaneous" refer to a second primary cancer diagnosed within six months of the index cancer, and "metachronous" refers to a second primary cancer identified six months or more subsequently. Only in the absence of any past records of invasive malignancy is a cancer considered index cancer [5]. The International Agency for Research on Cancer (IACR) recognizes six

¹Professor of Surgery, Unaizah College of Medicine & Medical Sciences, Qassim University, Saudi Arabia

²Teaching Assistant, Department of Surgery, Unaizah College of Medicine & Medical Sciences, Qassim University, Saudi Arabia

³Assistant Professor of Community Medicine, Al-Rayan National College of Medicine, Al-Madina Al-Munawara, Saudi Arabia

⁴Assistant Professor of Surgery, Qassim College of Medicine, Qassim University, Saudi Arabia

⁵Resident Internal Medicine, St. Barnabas Hospital, Bronx, NY, USA

^{*}Address correspondence to this author at the Professor of Surgery, Unaizah College of Medicine & Medical Sciences, Qassim University, Saudi Arabia; Mob: +966530435652; E-mail: docsajad@yahoo.co.in

months as the cut-off point, but the Surveillance Epidemiology and End Results (SEER) database suggests using a two-month timeframe to distinguish between synchronous and metachronous multiple primaries [6]. In the situation of triple MPMTs, various possible scenarios are: metachronous-metachronous, metachronous-synchronous, synchronous-metachronous, or synchronous-synchronous malignant neoplasms. Like this, there may be more options for the infrequent cases with quadruple primary tumours like synchronous-synchronous-metachronous, synchronous-metachronous, and so on.

INCIDENCE

According to reports from various regions of the world, the incidence of MPMT varies from 0.4% to 21% within 20 years of follow-up [7-8]. A second primary malignant lesion develops in 1 in 6 (16%) patients who had a primary cancer, and the incidence metachronous MPMT is higher than that synchronous MPMT, with a ratio of 2.7:1 [9]. The chance of acquiring a second primary malignancy varies depending on the cancer site [10] and can range from 1% (primary liver malignancy) to 16% (primary bladder cancer). Multiple primaries occurred in 16.9% of colon cancer patients and 19.9% of lung cancer patients, according to research by Weir et al. [11]. Amer [6] discovered nearly identical rates of multiple primaries in colon cancer patients; in contrast, he documented only 5.6% of multiple primaries in lung cancer patients. 25% of MPMT survivors are women whose breast cancer was their first primary, and 15% of men and women had colorectal cancer as their first primary [12].

RISK FACTORS

The exact aetiology is still unknown, but many epidemiological risk variables (Figure 1) have been proposed in the literature, which acting in combinations may lead to MPMTs [13].

Host Factors

Age has been proposed as a major risk factor. Patients between the ages of 50 and 64 have a 5%–12% prevalence of MPMT; for those over 80, that figure rises to 12%–26% [14]. Genetic predisposition is another significant factor that has been proposed [15]. It is primarily caused by mutations in about 100 identified genes, as well as an undetermined number of genes that have not been identified yet. These mutations can cause abnormal activation or silencing of

oncogenes, epigenetic changes, microsatellite instability (MSI), and defective repair of DNA damage [15]. According to a "multicentric origin" theory, several primary tumours in the same host may result from distinct mutation patterns in different genes. On the other hand, multi-site cancers may be predisposed by a mutation in a single gene. For example, germline mutations in the tumour protein p53 (TP53) gene cause a unique group of early-onset malignant tumours at various sites, such as soft tissue sarcoma, breast cancer, brain tumours, leukaemia, and adrenal carcinoma, in patients with Li-Fraumeni syndrome [17]. Similarly, germline mutations in the MEN1 gene in Multiple Endocrine Neoplasia (MEN) 1 syndrome predispose a carrier to pancreatic islet cell tumours, pituitary adenomas, and parathyroid adenomas, while in MEN2 syndrome, a germline RET-proto-oncogene mutation results in phaeochromocytoma and medullary thyroid cancer [18,19]. Germline mutations in the BRCA1 and BRCA2 genes [20] predispose to breast, ovarian, and prostrate tumours in hereditary breast and ovarian cancer syndrome (HBOC). The majority of cancers have an excess of familial clustering, and almost all malignancies that are inherited have an early age of beginning and a greater incidence of multiple primaries. Familial clustering seen with certain malignancies has been linked to aberrant genes or gene variants that predispose people to cancer, such as BRCA1, BRCA2, and p16/CDKN2A [21]. According to a study by Amer [6], patients with multiple primaries, and particularly Caucasians, had a strong family history of cancer, indicating a strong possibility of inherited cancer predisposition gene mutations. In contrast to the 7% incidence in the controls, Morita et al. [22] found that 27% of patients with MPMT had a family history of lung cancer or upper aerodigestive tract (UADT) cancer.

Endogenous and exogenous reproductive hormones drive cell proliferation, which tends to create opportunities for the accumulation of random genetic errors [23]. Hormonal therapy of breast cancers with agents like Tamoxifen, have been shown to increase the risk for subsequent development of endometrial, gastric, colon and ovarian cancers [24]. The co-occurrence of breast and colorectal cancers in women, but not in males, suggests that reproductive hormone variables are important in the development of both cancers in women [25].

Lifestyle

The odds of both cancer recurrence and the emergence of at least 11 new primary cancers are

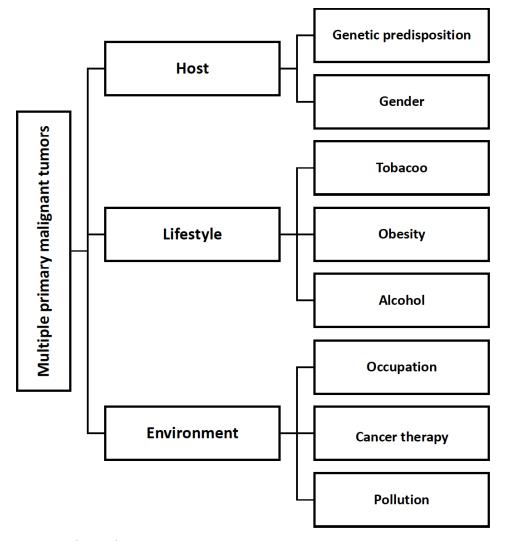


Figure 1: Epidemiological risk factors for multiple primary malignant tumours.

increased by active tobacco use [26]. Additionally, smoking shortens the survival period for cancer patients, and quitting smoking (SC) improves outcomes [27-29]. Following a retrospective analysis of 111 with multiple primary malignancies, individuals Romaszko-Wojtowicz et al. [28] reported that the incidence of multiple primary malignancies in cancer patients reached about 15%. Cancer patients who stopped smoking had an interval of 11.55 years (SD 7.24) between their index cancer and second tumour; those who did not guit had an interval of 6.10 years (SD 8.62) (p = 0.005). Furthermore, a longer survival time was observed in patients who had stopped smoking following the index cancer diagnosis compared to those who had not (p = 0.027). Similar to tobacco use, alcoholism has been linked to a higher chance of developing second primary cancers among survivors of upper aerodigestive tract tumours [30]. Accordingly, research indicates that abstinence from alcohol and tobacco use is the best strategy to lower

chance of developing additional primary aerodigestive tract cancers [30-32].

Cancer in the population at large has been shown to be related to obesity, especially in relation to cancers of the breast, female reproductive organs, thyroid, and gastrointestinal system. Research has indicated a positive association between an individual's body mass index (BMI) prior to the diagnosis of the index primary cancer and their likelihood of developing secondary primary cancers [33-35]. A low-grade chronic inflammatory state or elevated levels of circulating oestrogen, other circulating hormones, or growth factors are some of the hypothesized pathways by which obesity increases one's risk of developing multiple cancers [36].

Environment

Carcinogenic substances found in environmental contamination have implications. Radon is a major environmental source of ionizing radiation and longterm exposure to radon and its decay products can induce oxidative damage to DNA. Although there is clear evidence linking radon exposure to lung cancer, patients may also get primary cancers of the stomach [37], skin [38], kidneys, and central nervous system (CNS).

A substantial amount of literature has been generated about the causal role that cancer therapy plays in the occurrence of subsequent primary malignancies [39]. While there is a longer latency

period of 5–10 years after radiation therapy or hormone treatment, subsequent primaries following chemotherapy for index cancer may occur within a few months to a few years [14]. Lacouture *et al.* showed that using vemurafenib, an inhibitor of RAF (rapidly accelerated fibrosarcoma), induced the development of secondary cutaneous squamous cell carcinoma [40]. Olaparib, a Poly (ADP-ribose) polymerases (PARPs) inhibitor, has been associated with myelodysplastic syndromes and acute myeloid leukaemia [41]. The well-established adverse effects of asbestos exposure

Table 1: Examples of clinical cases of patients with synchronous advanced multiple primary tumours. Source: Vogt A, et al. ESMO Open 2017;2: e000172. doi:10.1136/esmoopen-2017-000172; reused in accordance with the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) license. https://creativecommons.org/licenses/by-nc/4.0/deed.en

Patient characteristics	Malignancy 1	Malignancy 2	Therapeutic dilemma	Current management strategy
60-year-old man, former smoker	Small cell lung cancer (SCLC) Progression: after 6 cycles of cisplatin/ etoposide	Aplastic anaemia Diagnosed 4 months after completion of cisplatin/etoposide	Chemotherapy at progression of SCLC not possible due to grade 4 neutropenia and thrombocytopenia in the setting of aplastic anaemia Immunosuppressive therapy for aplastic anaemia with possible negative impact on SCLC	Supportive treatment with eltrombopag for thrombocytopenia In case of stabilisation of pancytopenia, evaluation of second line therapy for SCLC
71-year-old man, hereditary haemochromatosis	Castration-resistant prostate cancer with bone and lymph node metastases	Renal cell carcinoma with lung metastases	Drugs active in for CRPC different than agents in RCC TKI used for RCC endocrine drugs (abiraterone/ enzalutamide) used for CRPC: combinations not tested, no safety data, possible drug—drug interactions, expensive combinations	Alternating treatment for the two malignancies: for example, TKI for 3–4 months for mRCC, then interruption and treatment for mCRPC for 3–4 months depending on the most significant tumour
64-year-old man, former smoker	Non-small cell lung cancer (NSCLC) stage IIIB	Rectal cancer stage I	Chemotherapy regimens active in NSCLC generally not active in rectal cancer NSCLC stage IIIB prognosis-defining, but untreated rectal cancer bears high risk of local complications (eg, bowel obstruction)	Curative resection of rectal cancer (node-negative) with protective colostomy Chemoradiation with curative intent for NSCLC (IIIB)
65-year-old woman, former smoker	NSCLC, metastatic to lymph nodes and bone, KRAS proto-oncogene (KRAS)-mutated, programmed death receptor ligand (PD-L1) expression 0%	Acute myeloid leukaemia (AML) Diagnosed simultaneously with NSCLC	Chemotherapy for NSCLC not possible due to grade 4 neutropenia in the setting of AML State-of-the art treatment for AML in the setting of metastatic NSCLC	Treatment with azacitidin for AML In case of stabilisation of AML, evaluation of treatment for NSCLC (checkpoint inhibitor rather than chemotherapy due to limited bone marrow reserve)

at work include malignant mesothelioma and cancers of the lungs, upper aerodigestive tract, colon, pancreas, and breast, among other primary tumours [42-44].

MANAGEMENT

well-defined evidence-based There are no treatment protocols that may fit all situations, and the management approach adopted for each patient is upon individual decisions taken multidisciplinary teams (MDT) [13]. Typically, the plan entails radiation/chemoradiation therapy and surgery or else palliation in highly advanced cancers (Table 1). There may be situations were synchronous multiple primaries, may be responsive to the same antitumour regimen [13].

PROGNOSIS

The prognosis of MPMT patients varies greatly, depending on a number of factors such as age, comorbidities, lifestyle, behavioural influences, the amount of time that passes between the index and subsequent primaries, the type of cancer, the location and stage of the disease at diagnosis [13]. Compared to patients with a single primary, those with MPMT have generally been shown to have a higher survival rate [6,45]. The patients who had three or more primaries in the study by Amer [6] had the greatest survival rate, which was roughly comparable to the expected life expectancy of the general US population that was age- and sex-matched. Patients with metachronous primaries do better than those with synchronous primaries [6, 46]. There was a 5-year survival rate of 44% for metachronous primary lung cancer and 10% for synchronous primary lung cancer in patients who had lung cancer as a second primary after having index breast cancer [47]. The longer the interval between the index cancer and the subsequent tumours, the better the prognosis [46].

SCENARIOS THAT DEMAND MORE CAREFUL **CONSIDERATION**

It is emphasized that a physician should constantly be cognizant of the possibility of a second, distinct primary tumour, either synchronous or metachronous, and that the following clinical scenarios ought to urge them to provide the patient a more comprehensive assessment [13].

а Atypical nature of metastatic spread of the identified primary tumour (e.g., sclerotic bone

- lesions on imaging studies of papillary thyroid carcinoma).
- b. Disproportional tumour burden with respect to tumour marker titre (e.g., low prostate-specific antigen level in prostate cancer with extensive liver metastases on imaging studies).
- Appearance of new or chronologically atypical C. metastases many years after an index cancer management.
- Recurrence in patients with exposure to environmental carcinogens (e.g., smoking, Rodon, asbestos).
- Features of malignancy after e. new prior chemotherapy or radiation therapy for malignancy.
- During initial staging or at follow-up of index tumour, suspicious lesion on imaging (e.g., lesions on Positron emission tomographycomputed tomography (PET-CT) with difference in standard uptake value). Ishimori et al. [48] discovered that in a large series of 1912 patients who had undergone whole-body (18)F-FDG PET/CT scans for known or suspected malignant new, unexpected (18)F-FDG-avid lesions, primary malignant tumours were found in 22 (1.2%) cases, and the origin was from the thyroid, colon, breast, oesophagus, bile duct, and head and neck regions. In 17% of patients, synchronous multiple primary tumours were found in the stomach, colon, lungs, head, and neck regions during PET-CT staging oesophageal cancer, as reported by Miyazaki et al. [49].

CONCLUSION

When evaluating and monitoring a patient with cancer, it is important to consider the possibility of multiple primary malignant tumours (MPMT). Newer techniques for imaging such as PET scans can now identify cancers that would not otherwise be detectable by clinical examination and traditional imaging modalities. Clinicians need to be well-versed on different scenarios that increase the probability of having multiple primary malignant tumours.

ABBREVIATIONS

MPMT = multiple primary malignant tumours PET-CT = Positron emission tomography–computed tomography

RAF = Rapidly accelerated fibrosarcoma

UADT = Upper aerodigestive tract

PARP = Poly (ADP-ribose) polymerases

IACR = International Agency for Research on

Cancer

MDT = Multidisciplinary teams

AUTHOR CONTRIBUTIONS

The authors have participated in conceptualization of the article, review of the literature, drafting of the manuscript and illustrations; and all have approved the final draft of the manuscript.

SUPPORTIVE FOUNDATIONS

None.

CONFLICT-OF-INTEREST

None.

REFERENCES

- Billroth T. Pathology and therapeutics, in fifty lectures. 1871. Clin Orthop Relat Res 2003; (408): 4-11. https://doi.org/10.1097/00003086-200303000-00002
- [2] Han Y, Shao N, Xi X, Hao X. Use of microwave ablation in the treatment of patients with multiple primary malignant tumors. Thorac Cancer 2017; 8(4): 365-371. https://doi.org/10.1111/1759-7714.12445
- [3] Zhang L, Feng L, Cong H, Yu Z, Wang H, Dong Y, Wang J. Multiple primary malignant neoplasms: A case report and literature review. Oncol Lett 2019; 18(4): 4210-4220. https://doi.org/10.3892/ol.2019.10779
- [4] Warren S, Gates O. Multiple Primary Malignant Tumors: A Survey of the Literature and Statistical Study. American Journal of Cancer 1932; 16: 1358-1414.
- [5] Shah SA, Riaz U, Zahoor I, Jalil A, Zubair M. Carcinoma multiplex. J Coll Physicians Surg Pak 2013; 23(4): 290-2.
- [6] Amer MH. Multiple neoplasms, single primaries, and patient survival. Cancer Manag Res 2014; 6: 119-34. https://doi.org/10.2147/CMAR.S57378
- [7] Demandante CG, Troyer DA, Miles TP. Multiple primary malignant neoplasms: case report and a comprehensive review of the literature. Am J Clin Oncol 2003; 26(1): 79-83. https://doi.org/10.1097/00000421-200302000-00015
- [8] Babacan NA, Aksoy S, Cetin B, Ozdemir NY, Benekli M, Uyeturk U, Ali Kaplan M, Kos T, Karaca H, Oksuzoglu B, Zengin N, Buyukberber S. Multiple primary malignant neoplasms: multicenter results from Turkey. J BUON 2012; 17(4): 770-5.
- [9] Xu LL, Gu KS. Clinical retrospective analysis of cases with multiple primary malignant neoplasms. Genet Mol Res 2014; 13(4): 9271-84. https://doi.org/10.4238/2014.March.12.19
- [10] Hayat MJ, Howlader N, Reichman ME, Edwards BK. Cancer statistics, trends, and multiple primary cancer analyses from the

Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 2007; 12(1): 20-37.

https://doi.org/10.1634/theoncologist.12-1-20

- [11] Weir HK, Johnson CJ, Thompson TD. The effect of multiple primary rules on population-based cancer survival. Cancer Causes Control 2013; 24(6): 1231-42. https://doi.org/10.1007/s10552-013-0203-3
- [12] Mariotto AB, Rowland JH, Ries LA, Scoppa S, Feuer EJ. Multiple cancer prevalence: a growing challenge in long-term survivorship. Cancer Epidemiol Biomarkers Prev 2007; 16(3): 566-71. https://doi.org/10.1158/1055-9965.EPI-06-0782
- [13] Vogt A, Schmid S, Heinimann K, Frick H, Herrmann C, Cerny T, Omlin A. Multiple primary tumours: challenges and approaches, a review. ESMO Open 2017; 2(2): e000172. https://doi.org/10.1136/esmoopen-2017-000172
- [14] Soerjomataram I, Coebergh JW. Epidemiology of multiple primary cancers. Methods Mol Biol 2009; 471: 85-105. https://doi.org/10.1007/978-1-59745-416-2 5
- [15] Cybulski C, Nazarali S, Narod SA. Multiple primary cancers as a guide to heritability. Int J Cancer 2014; 135(8): 1756-63. https://doi.org/10.1002/ijc.28988
- [16] Kang GH, Kim CJ, Kim WH, Kang YK, Kim HO, Kim YI. Genetic evidence for the multicentric origin of synchronous multiple gastric carcinoma. Lab Invest 1997; 76(3): 407-17.
- [17] Villani A, Shore A, Wasserman JD, Stephens D, Kim RH, Druker H, Gallinger B, Naumer A, Kohlmann W, Novokmet A, Tabori U, Tijerin M, Greer ML, Finlay JL, Schiffman JD, Malkin D. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol 2016; 17(9): 1295-305. https://doi.org/10.1016/S1470-2045(16)30249-2
- [18] Pang JT, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1). Eur J Cancer 1994; 30A(13): 1961-8. https://doi.org/10.1016/0959-8049(94)00387-K
- [19] Eng C, Clayton D, Schuffenecker I, Lenoir G, Cote G, Gagel RF, van Amstel HK, Lips CJ, Nishisho I, Takai SI, Marsh DJ, Robinson BG, Frank-Raue K, Raue F, Xue F, Noll WW, Romei C, Pacini F, Fink M, Niederle B, Zedenius J, Nordenskjöld M, Komminoth P, Hendy GN, Mulligan LM, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 1996; 276(19): 1575-9. https://doi.org/10.1001/jama.1996.03540190047028
- [20] Gabai-Kapara E, Lahad A, Kaufman B, Friedman E, Segev S, Renbaum P, Beeri R, Gal M, Grinshpun-Cohen J, Djemal K, Mandell JB, Lee MK, Beller U, Catane R, King MC, Levy-Lahad E. Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2. Proc Natl Acad Sci USA 2014; 111(39): 14205-10. https://doi.org/10.1073/pnas.1415979111

[21] Albright F, Teerlink C, Werner TL, Cannon-Albright LA. Significant evidence for a heritable contribution to cancer

2012; 12: 138. https://doi.org/10.1186/1471-2407-12-138

[22] Morita M, Kuwano H, Baba H, Taketomi A, Kohnoe S, Tomoda H, Araki K, Saeki H, Kitamura K, Sugimachi K. Multifocal occurrence of gastric carcinoma in patients with a family history of gastric carcinoma. Cancer 1998; 83(7): 1307-11. https://doi.org/10.1002/(SICI)1097-0142(19981001)83:7<1307::AID-CNCR6>3.0.CO:2-F

predisposition: a review of cancer familiality by site. BMC Cancer

- [23] Henderson BE, Feigelson HS. Hormonal carcinogenesis. Carcinogenesis 2000; 21(3): 427-33. https://doi.org/10.1093/carcin/21.3.427
- [24] Ricceri F, Fasanelli F, Giraudo MT, Sieri S, Tumino R, Mattiello A, Vagliano L, Masala G, Quirós JR, Travier N, Sánchez MJ, Larranaga N, Chirlaque MD, Ardanaz E, Tjonneland A, Olsen A, Overvad K, Chang-Claude J, Kaaks R, Boeing H, Clavel-Chapelon F, Kvaskoff M, Dossus L, Trichopoulou A, Benetou V, Adarakis G, Bueno-de-Mesquita HB, Peeters PH, Sund M, Andersson A, Borgquist S, Butt S, Weiderpass E, Skeie G, Khaw KT, Travis RC, Rinaldi S, Romieu I, Gunter M, Kadi M, Riboli E,

- Vineis P, Sacerdote C. Risk of second primary malignancies in women with breast cancer: Results from the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer 2015; 137(4): 940-8. https://doi.org/10.1002/ijc.29462
- Neugut AI, Murray TI, Lee WC, Robinson E. The association of [25] breast cancer and colorectal cancer in men. An analysis of surveillance, epidemiology, and end results program data. Cancer 1991; 68(9): 2069-73. https://doi.org/10.1002/1097-0142(19911101)68:9<2069::AID-CNCR2820680938>3.0.CO;2-M
- [26] Day AT, Tang L, Karam-Hage M, Fakhry C. Tobacco Treatment Programs at National Cancer Institute-designated Cancer Centers: A Systematic Review and Online Audit. Am J Clin Oncol 2019; 42(4): 407-410. https://doi.org/10.1097/COC.000000000000522
- [27] Tabuchi T, Ito Y, Ioka A, Nakayama T, Miyashiro I, Tsukuma H. Tobacco smoking and the risk of subsequent primary cancer among cancer survivors: a retrospective cohort study. Ann Oncol 2013; 24(10): 2699-2704. https://doi.org/10.1093/annonc/mdt279
- [28] Romaszko-Wojtowicz A, Buciński A, Doboszyńska A. Impact of smoking on multiple primary cancers survival: a retrospective analysis. Clin Exp Med 2018; 18(3): 391-397. https://doi.org/10.1007/s10238-018-0498-1
- Fitzpatrick P, Bhardwaj N, Masalkhi M, Lyons A, Frazer K, [29] McCann A, Syed S, Niranjan V, Kelleher CC, Brennan S, Kavanagh P, Fox P. Provision of smoking cessation support for patients following a diagnosis of cancer in Ireland. Prev Med Rep 2023; 32: 102158. https://doi.org/10.1016/j.pmedr.2023.102158
- [30] Hsu WL, Chien YC, Chiang CJ, Yang HI, Lou PJ, Wang CP, Yu KJ, You SL, Wang LY, Chen SY, Yang CS, Chen CJ. Lifetime risk of distinct upper aerodigestive tract cancers and consumption of alcohol, betel and cigarette. Int J Cancer 2014; 135(6): 1480-6. https://doi.org/10.1002/ijc.28791
- [31] Day GL, Blot WJ, Shore RE, McLaughlin JK, Austin DF, Greenberg RS, Liff JM, Preston-Martin S, Sarkar S, Schoenberg JB, et al. Second cancers following oral and pharyngeal cancers: role of tobacco and alcohol. J Natl Cancer Inst 1994; 86(2): 131https://doi.org/10.1093/jnci/86.2.131
- Druesne-Pecollo N, Keita Y, Touvier M, Chan DS, Norat T, Hercberg S, Latino-Martel P. Alcohol drinking and second [32] primary cancer risk in patients with upper aerodigestive tract cancers: a systematic review and meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev 2014; 23(2): 324-31. https://doi.org/10.1158/1055-9965.EPI-13-0779
- Kmet LM, Cook LS, Weiss NS, Schwartz SM, White E. Risk [33] factors for colorectal cancer following breast cancer. Breast Cancer Res Treat 2003; 79(2): 143-7. https://doi.org/10.1023/A:1023926401227
- Trentham-Dietz A, Newcomb PA, Nichols HB, Hampton JM. [34] Breast cancer risk factors and second primary malignancies among women with breast cancer. Breast Cancer Res Treat 2007; 105(2): 195-207. https://doi.org/10.1007/s10549-006-9446-v
- Jung SY, Kim YA, Jo M, Park SM, Won YJ, Ghang H, Kong SY, [35] Jung KW, Lee ES. Prediagnosis obesity and secondary primary cancer risk in female cancer survivors: A national cohort study. Cancer Med 2019; 8(2): 824-838. https://doi.org/10.1002/cam4.1959

- [36] Roberts DL, Dive C, Renehan AG. Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 2010; 61: 301-16. https://doi.org/10.1146/annurev.med.080708.082713
- [37] Messier KP, Serre ML. Lung and stomach cancer associations with groundwater radon in North Carolina, USA. Int J Epidemiol 2017; 46(2): 676-685. https://doi.org/10.1093/ije/dyw128
- Bräuner EV, Loft S, Sørensen M, Jensen A, Andersen CE, Ulbak [38] K, Hertel O, Pedersen C, Tjønneland A, Krüger Kjær S, Raaschou-Nielsen O. Residential Radon Exposure and Skin Cancer Incidence in a Prospective Danish Cohort. PLoS One 2015; 10(8): e0135642. https://doi.org/10.1371/journal.pone.0135642
- Dimopoulos MA, Richardson PG, Brandenburg N, Yu Z, Weber [39] DM, Niesvizky R, Morgan GJ. A review of second primary malignancy in patients with relapsed or refractory multiple myeloma treated with lenalidomide. Blood 2012; 119(12): 2764-7. https://doi.org/10.1182/blood-2011-08-373514
- Lacouture ME, O'Reilly K, Rosen N, Solit DB. Induction of [40] cutaneous squamous cell carcinomas by RAF inhibitors: cause for concern? J Clin Oncol 2012; 30(3): 329-30. https://doi.org/10.1200/JCO.2011.38.2895
- [41] Ricks TK, Chiu HJ, Ison G, Kim G, McKee AE, Kluetz P, Pazdur R. Successes and Challenges of PARP Inhibitors in Cancer Therapy. Front Oncol 2015; 5: 222. https://doi.org/10.3389/fonc.2015.00222
- [42] Dohner VA, Beegle RG, Miller WT. Asbestos exposure and multiple primary tumors. Am Rev Respir Dis 1975; 112(2): 181-
- [43] Fischbein A, Luo JC, Pinkston GR. Asbestosis, laryngeal carcinoma, and malignant peritoneal mesothelioma in an insulation worker. Br J Ind Med 1991; 48(5): 338-41. https://doi.org/10.1136/oem.48.5.338
- [44] Attanoos RL, Thomas DH, Gibbs AR. Synchronous diffuse malignant mesothelioma and carcinomas in asbestos-exposed individuals. Histopathology 2003; 43(4): 387-92. https://doi.org/10.1046/j.1365-2559.2003.01685.x
- [45] Kollias J, Ellis IO, Elston CW, Blamey RW. Prognostic significance of synchronous and metachronous bilateral breast cancer. World J Surg 2001; 25(9): 1117-24. https://doi.org/10.1007/BF03215857
- [46] Friedrich RE. Primary and second primary cancer in 649 patients with malignancies of the maxillofacial region. Anticancer Res 2007; 27(4A): 1805-18.
- Aziz TM, Saad RA, Glasser J, Jilaihawi AN, Prakash D. The [47] management of second primary lung cancers. A single centre experience in 15 years. Eur J Cardiothorac Surg 2002; 21(3): 527-33. https://doi.org/10.1016/S1010-7940(02)00024-6
- [48] Ishimori T, Patel PV, Wahl RL. Detection of unexpected additional primary malignancies with PET/CT. J Nucl Med 2005; 46(5): 752-7.
- Miyazaki T, Sohda M, Higuchi T, Tanaka N, Suzuki S, Sakai M, [49] Yokobori T, Nakajima M, Fukuchi M, Tsushima Y, Kato H, Kuwano H. Effectiveness of FDG-PET in screening of synchronous cancer of other organs in patients with esophageal cancer. Anticancer Res 2014; 34(1): 283-7.

Received on 22-10-2023 Accepted on 20-11-2023 Published on 11-12-2023

https://doi.org/10.30683/1927-7229.2023.12.09

© 2023 Salati et al.; Licensee Neoplasia Research.

This is an open access article licensed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.