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Abstract: Globally Prostate Cancer is the second most commonly diagnosed and sixth leading cause of Cancer
mortalities in men worldwide but currently there is no cure for metastatic castration-resistant prostate cancer (CRPC).
Chemoresistance and metastasis are the main causes of treatment resistance and mortality in Prostate Cancer patients.
Although several advances have been made to control yet there is an urgent need to investigate the mechanisms and
pathways for chemoresistance and prostate cancer (PCa) metastasis. Cancer stem cells (CSCs), a sub-population of
cancer cells characterised by self-renewal and tumor initiation, have gained intense attention as they not only play a
crucial role in cancer relapse but also contribute substantially to chemoresistance. Contributing to the role of CSCs are
the miRNAs which are known key regulators of the posttranscriptional regulation of genes involved in a wide array of
biological processes including tumorigenesis. The altered expressions of miRNAs have been associated with not only
with tumor development but also with invasion, angiogenesis, drug resistance, and metastasis. Thus identification of
signature miRNA associated with EMT and CSCs would provide a novel therapeutic strategy for the improvement of

current treatment thus leading to increase in patient’s survival.
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INTRODUCTION

Prostate Cancer has become a major health burden
in the industrialized world accounting for three fourths
of the registered cancer cases during the last decades
of the twentieth century [1]. According to the WHO
Globocan 2012 report, Prostate Cancer is expected to
grow to approximately 2 million new cases and 50000
mortalities by 2030 with a five year prevalence of
approximately 25.2% [2]. Disease mortality is primarily
due to metastatic spread from the organ confined stage
highlighting the urgent need to identify factors involved
in this progression. Epithelial to mesenchymal
transition (EMT) is an intrinsic event during progression
of metastatic cancer. Researchers have showed Whnt,
Notch and Hedgehog signaling pathways to be the
most common pathways involved in EMT in Cancers by
regulating expression of cancer stem cell related
miRNAs.  MicroRNAs are small  non-coding
endogenously expressed RNA molecules that are
known to regulate of biological processes by altering
gene expression at the post transcriptional level. The
role of miRNAs in control of tumor growth and
progression has been shown by a growing number of
evidences. MicroRNAs have also been seen to play
crucial roles in maintaining dynamic balance between
EMT and MET respectively, collectively termed as
“‘metastamirs” [3]. These pathways are known to be
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primarily involved in embryonic development,
organogenesis, stem cell proliferation and
angiogenesis [4-5]. Thus it is imperative to identify
regulatory pathways as well as cancer stem cell related
miRNAs which would eventually lead to identification of
sensitive and specific biomarkers that could facilitate
early detection as well as metastatic stages of Prostate
Cancer.

EPITHELIAL TO MESENCHYMAL TRANSITION IN
CANCER

Epithelial to mesenchymal transition (EMT) is a
trans-differentiation process which is crucial during
embryogenesis, wound repair, organ remodelling and
also tumor progression [6]. EMT is associated with
various cellular properties such as altered morphology,
migration, invasion and stemness [7]. In cancer, EMT is
integral in uncontrolled tissue repair, organ fibrosis,
induction of tumor growth, angiogenesis and especially
metastasis [8].

Kalluri and Weinberg described EMT as epithelial
cells being connected to each other and linked to the
extracellular matrix by intracellular junctions (adherens
and tight junctions, desmosomes) which eventually
acquire mesenchymal characteristics and can invade
and metastasize among other biological processes [9].
These circadian phenotype changes should be
reversible in nature so that mesenchymal cells can
revert back to epithelial phenotype and hence
eventually form macroscopic tumors in different areas
[10]. EMT is hence marked by downregulation of
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Figure 1: Epithelial to Mesenchymal Transition.

epithelial markers (E-cadherin) and upregulation of
mesenchymal markers (N-cadherin and Vimentin)
thereby leading to increased migratory capacity and
invasiveness. During EMT, E-cadherin gets replaced
by N-cadherin in a process known as ‘Cadherin
switching’ [11-12]. Reported markers include
extracellular markers (Fibronectin, Vitronectin), cellular
localization (Vimentin, E-cadherin), Cellular matrix
proteins  (E-Cadherin, Claudin, Occludins) and
cytoplasmic proteins (Cytokeratins, Vimentins) [13-16].

CANCER STEM CELLS

Majority of cells in solid tumors have limited self-
renewal ability and are non-tumorigenic. Only a small
subpopulation of cancer cells exhibit ability of extensive
self-renewal and tumor formation. This small sub-
population is called cancer stem cells (CSCs), or
cancer initiating cells (CICs), or tumor stem cells
(TSCs) [17-18].

The concept that cancer might evolve from a small
sub population of cells with stem cells like properties
was proposed about 150 years ago [19-20]. The
leukemic stem cells (LSCs) were the first CSCs
described as in human Acute Myeloid Leukemia (AML)
[21-22]. It was demonstrated by Bonnet and Dick that a
subpopulation of CD34+/CD38-AML cells displayed
differentiation potential as well as underwent
proliferation and self renewal. These LSCs were able to
give rise to heterogeneous population in NOD/SCID
(non-obese diabetic/severe combined
immunodeficiency) mice [23]. Since then various
researchers have validated the presence of CSCs
which is further strengthened by the recent
developments in detecting technologies.

Two models have been proposed to explain tumor
heterogeneity: the stochastic and hierarchical models
(Figure 2). The stochastic model proposed that all cells
within a tumor are biologically homogenous and exhibit
equal capacity to regenerate the tumor however the
hierarchical model (also known as the CSC model)
suggested that only a small subpopulation of tumor
cells possesses the capacity to regenerate the tumor
[24-25] and the tumor cells can be separated into tumor
initiating and non tumor initiating cells. CSCs (tumor-
initiating cells) are defined by their capacity for self-
renewal, potential to differentiate into any cells in a
tumor, and exhibit proliferative capacity [26].

Thus common characteristics exhibited by Cancer
Stem Cells are:

(1)  Self-renewal ability (Asymmetric divisions): This
leads to generation of quiescent cancer stem
cells and committed progenitors [27]. This self
renewal ability of CSCs is regulated by signaling
pathways such as, Wnt, Sonic Hedgehog, Notch,
and Polycomb genes (BMI-1 and EZH2);

(3) Extended telomeres and telomerase activity:
CSCs exhibit extended telomeres and
telomerase activity due to which they have
increased life span;

(4) ATP-binding cassette (ABC) transporters: CSCs
express the ABC transporters thus providing
cellular resistance against specific growth-
inhibitory drugs;

(5) Surface receptor expression: They express
surface receptors such as, c-kit, c-met, LIF-R,
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Figure 2: Tumor Heterogeneity Model.

CD133, and CXCR4 which are known stem cell
markers and have been associated with
metastasis;

(6) Tumor suppressors: Tumor suppressors, such
as p53, p16INK4a, and p19ARF inhibit cancer
cell proliferation as well as promote their self-
renewal [28-29].

All these characteristics are similar to the stem cell
characteristics thus indicating common molecular
mechanisms for example, molecular pathways, which
play a critical role in controlling stem cell self-renewal
such as Wnt, Notch and Hedgehog pathways are often
dysregulated in a number of tumors [30] and eventually

contribute to chemoresistance and radio resistance
during tumor therapy [31-33].

CANCER STEM
CHEMORESISTANCE

CELLS IN CaP/PCa

The cellular origins of CaP have been attributed to
terminally differentiated luminal cells by various
researchers, [34] however there are increasing
evidences which supports the existence of CSCs in
CaP [35-39].

During androgen deprivation therapy, the androgen
levels are depleted and some epithelial cells die.
However, consequently during PCa progression i.e.
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during metastasis some epithelial cells get renewed
which exhibit stem cell like properties in PCa tissue
[40]. These CSCs being self renewable potentially lead
to tumor development and metastasis of Prostate
cancer tissues [41]. These cancer stem cells have
been seen to repopulate in tumor cells to distant sites
thus further supporting their potential role in metastasis
[42].

CSCs and EMT

Various researchers have reported that EMT and
CSCs are primary reasons for drug resistance in
cancer including Castration Resistant Prostate Cancer
(CRPC) which is being supported by studies reporting
closely associated signatures of both EMT as well as
CSCs

In a research carried out by Mani et al., in 2008 it
has been shown that Human Mammary Epithelial cells
(HMLEs) undergoing EMT had CD44 "" / CD 42 "
phenotype. Also Twist or Snail induced EMT in HMLEs
led to a mesenchymal fibroblastic appearance, along
with upregulation of mesenchymal markers (N-
cadherin, Vimentin and Fibronectin) and downregu-
lation of epithelial markers (E-cadherin etc.) [43].

In another study by Kong et al. [44] it was reported
that PC3 prostate cancer cells which are forced to
express PDGF-D display EMT characteristics. These
cells not only showed cancer stem-like cell
characteristics after over-expression of pluripotency
genes, such as the Nanog, Oct4, Sox2, Lin28 but also
showed activation of polycomb repressor complex,
which is associated with increased clonogenic and
prostasphere forming capacity both in vitro and
tumorigenicity in vivo.

Besides this several researchers have reported that
both EMTs and CSCs self renewal potentials are driven
by same regulatory pathways such as Wnt, Notch and
Hedgehog [45-48].

MicroRNAs, Cancer Stem Cells and Cancer

MicroRNAs (miRNAs) are small non-coding
regulatory RNAs of approximately 18-20 nucleotides in
length which bind to the 3’ untranslated region of their
mRNA targets resulting in their degradation or
translation repression thus regulate self renewal,
differentiation, and differentiation of cells [49].

Recent researches have concluded presence of
distinct subpopulation of cancer cells with properties of

self renewal and tumor initiation / maintenance thereby
acting as Cancer Stem Cells (CSCs). These acquired
abnormalities allow them to escape the stem cell niche
and reach stage of unlimited self renewal. This may
lead to silencing of some crucial regulatory genes.
Studies suggest that miRNAs being implicated in RNAI
pathway negatively regulate the gene and protein
expression level at the post transcriptional level [50].
This certain abnormal miRNA expression level affects
cancer stem cells dysregulation, and thus their
unlimited self renewal and cancer progression.
Therefore, miRNA expression is very vital for cancer
stem cell dysregulation [51]. Emerging evidences show
miRNAs functioning as oncogenes or tumor
suppressors, being involved in cancer proliferation,
differentiation, apoptosis and metastasis. Therefore,
microRNA-based therapeutics which can rectify the
aberrant transcription of genes in cancer and which can
especially target CSCs hold a great potential in cancer
therapy [52].

Evidences of miRNAs in EMT during Progression
of PCa

Current evidences have shown microRNAs to play a
crucial role during metastasis in cancer primarily
through regulating Epithelial to  Mesenchymal
Transition in various cancers. As discussed above
changes in expressions of Snail, Slug, Twist, Zeb1,
Zeb2, E-cadherin and Vimentin are considered as
hallmarks of EMT phenotype. More recently, miRNAs
have evolved as potential biomarkers for EMT during
metastasis in cancer.

miR-200 family (miR-200a, 200b, 200c, 141 and
429) and also miR-205 are being considered as new
EMT markers considering their significant role during
metastasis in almost all cancers by directly targeting
expressions of Zeb1 and Zeb2 gene. The expression of
CDH1 gene which transcribes E-cadherin, a key player
in cell motility and cell invasiveness can be controlled
by regulating expression of miR-9. In Glioblastoma
cells, miR-10b regulates expression of HOXD10,
RHOC, uPAR and MMP-14 genes hence regulating
their role in invasiveness of tumor cells. Studies have
shown that overexpression of miR-29b can cause
reversal in EMT by inhibiting the invasive phenotype of
tumor cells. A number of studies have shown that the
downregulation of miR-138 can be linked with
mesenchymal cell properties which lead to cell
invasiveness during EMT. Liu et al., demonstrated that
the downregulation of miR-138 also leads to reduced
expression in E- cadherin and increased expressions of
Vimentin as well [53].
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miR-200

The miR-200 family (miR-200a, miR-200b, miR-429,
miR-200c, miR-141) potent inducer of epithelial
differentiation and are generated from two transcripts,
deriving from Chromosome 1 and 12 [54]. These tend
to inhibit expression of ZEB 1 and ZEB 2 at post
transcriptional level by binding to the target sites in

their UTRs. Also, miR-200 family are transcriptional
targets of ZEB1 and ZEB2. This leads to a double
negative feedback loop known as ZEB/miR-200
feedback loop where activation of one group negatively
affects the expression of other [55]. And thus,
depending on extracellular signaling this loop switches
and stabilizes epithelial or mesenchymal phenotype in
Prostate cancer. Wang et al., reported that miR-200
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can directly regulate EMT and facilitate pluripotent
stem cells by activating Oct4 and SOX2 [56].

miR-29b

miR-29b affects multiple steps during metastasis
including invasion, motility, cellular survival and
proliferation. Researchers have shown miR-29b in
Prostate cancer cells inhibiting Mcl-1 and MMP2
protein expression [57]. Over expression of miR-29b
induced reduced expressions of E-Cadherin and also
reversal of EMT by expression of mesenchymal
markers N-Cadherin, Twist and Snail and also the
acquisition of a less invasive phenotype [58]. Thus,
miR-29b plays a tumor suppressor role in Prostate
cancer by inhibiting EMT and loss of miR-29b increases
CD44+ stem cells levels during metastasis [59].

miR-34a

According to various studies sphere formation and
tumor progression in Prostate cancer cells and in
CD44+ cells can be inhibited by upregulation of miR-34
[60]. Hence, miR-34a can act as a therapeutic option
for Prostate cancer with cancer origin of stem cells,
being a critical negative regulator of Cancer Stem
Cells.

miR-182 and miR-203

Overexpression of miR-182 and miR-203 have been
shown to increase levels of E-cadherin/P-Cadherin and
decrease SNAI2 expression therefore inducing
significant mesenchymal to epithelial transition (MET)
morphological characteristics. Thus MET can be
induced in PC3 cells by re-expression of miR-182 and
miR-203 [61]. Liu reported proliferation and invasion in
PC3 cells by overexpression of miR-182 and
downregulation of NDRG2 [62]. CD44 has been
reported to maintain the stemness of CSCs by
triggering SNAIL-mediated miR-203 suppression [63].

miR-320

miR-320 and B-Catenin expression is inversely
correlated in CD44+ PCa cells. Furthermore, gene
expression profiling of miR-320-overexpressing PCa
cells showed a significant decrease in downstream
target genes of the Wnt/B-Catenin pathway and CSC
markers [64].

Let-7 family

The Let-7 family of miRNAs was first discovered in
Caenorhabditis elegans and is seen to be functionally

conserved in humans as well. In humans, 13-Let 7
family precursor miRNAs located on different nine
chromosomes (Let-7a-1, Let-7a-, Let-7a-3, Let-7b, Let-
7c, Let-7d, Let-7e, Let-7e, Let-7f, Let-7g, Let-7i, Let-98,
Let-202) which are known to code for ten mature Let-7
miRNA isoforms [64]. The Let-7 family plays crucial
role in controlling stem cell differentiation and its
dysregulation results in a lesser differentiated cellular
state leading to cancer [65].

Prostate CSCs were seen to have downregulated
Let-7 expressions and with reconstitution of Let-7,
growth of PC cells could be repressed [66]. The
connection between EMT and let-7 is represented by
the HMGA1 and HMGA2 genes, which are directly
regulated by let-7 and were found to be implicated in
EMT [67]. Further, miRNAs of the let-7 family were
reported to directly, negatively regulate IL6, NRAS, c-
Myc, HMGA1, HMGA2, and CCND2. The c-Myc protein
regulates the biogenesis of let-7 by stimulating Lin28
which in turn blocks the maturation of let-7 [68].
Additionally, c-Myc stimulates the expression of
HMGA1, AR, and IL6. HMGA2 on the influences
HMGA1, its gene product in turn regulates the
expression of c-Myc and HMGB1. HMGB1 was found
to bind the AR promoter, AR protein was described
itself to stimulate let-7 expression.

miR-30a

Downregulation of miR-30a-5p and 30c are seen to
be a common scenario in variety of CD44+ cancer
stem cell lines [69-71]. Integrin 33, the target gene of
miR-30 is upregulated in various cancers [72]. ETS-
related genes are the most frequently overexpressed
oncogene in Prostate Cancer and a direct target of
miR-30a. In his research Kao et al., showed that
overexpression of miR-30a in PCa can inhibit cell
migration and invasion hence suppressing EMT
phenotype [73] thereby proving the role of miR-30a as
a potential tumor suppressor in PCa. Similar results
have been seen in other cancers as well, by targeting
SNAIL and Vimentin. Overexpression of E-cadherin
was observed in virtually all cases, and the majority of
the mesenchymal markers, including N-cadherin,
TGFB1, ZEB1, Vimentin, and SNAI2, were downregu-
lated [74]. Also TWIST1 was overexpressed in majority
of cases. This gene expression profile strongly sug-
gests that localized PCa maintains the epithelial pheno-
type despite tumor differentiation and increasing stage.

miR-143 and miR-145

miR-143 and miR-145 have been seen to be crucial
regulators during bone metastasis in Prostate cancer
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Table 1: List of miRNAs and their Targets Implicated during Metastasis in Prostate Cancer

miRNAs CSC markers EMT markers

miR-143 CD133, CD44, Oct4, c-Myc, KIf-4, Sox2 [65] Vimentin, Fibronectin, E-cadherin [66]
miR-34a CD44+ [51] Cyclin D1, CDK4, N-Myc, Snail [51]
miR-145 CD133, CD44, Oct4, c-Myc, KiIf-4, Sox2 [65] Vimentin, Fibronectin, E-cadherin [66]
miR-182 N-Myc, Nanog [52] NDRG1 [53]

miR-203 CD44+ [52] Snail [54]

miR-320 CD44+ [55] Wnt/B-Catenin [55]

miR-708 CD44+ [67] Akt-2 [67]

Let-7 CD44+, CD133+, c-Myc [56] Ras, HMG, Bcl-2 [57-58]
miR-200b Oct4, Nanog, Sox2 [47] Zeb1, Zeb2, E-cadherin, Snail, Slug [45-46]
miR-373 CD44+ [68] SIRT1, MMP9 [69-70]
miR-520c CD44+ [68] SIRT1, MMP9 [69-70]
miR-29b CD44+ [50] E-cadherin, N-cadherin, Twist, Snail [48-49]
miR-30a Oct3, Integrin 31 [59-61] Twist, Vimentin [63-64]

[75]. In a recently published report overexpression of
both these miRNAs led to inhibition of cell viability and
colony formation in Prostate cancer cells. Besides,
decreasing tumor sphere formation, miR-143 and miR-
145 suppress CSCs markers including CD133, c-Myc,
Oct4, CD44 and Kif-4 in PC-3 cells [76].

miR-708

CD44 and CD133 expressing tumor initiating cells
are known to be crucial contributors in tumor
recurrence in Prostate cancer. Saini ef al., reported that
reduced miR-708 expression directly lead to repression
of tumor initiation and progression by regulating CD44
and AKT2 [77].

miR-373 and miR-520c

These miRNAs are known to stimulate migration
and invasion of cancer cells. Researchers report
suppression of CD44 can explain the migration
characteristics of miR-373 and miR-520c [78]. Both of
these miRNAs exhibit dual action as oncogenes or
tumor suppressor genes in different human cancers
[79]. miR-373 and miR-520c contribute in metastasis
by upregulating expressions of MMP-9 expressions by
activating the Ras/Raf/Mek/Erk signaling pathways and
directly targeting mTOR and SIRT1 [80-81].

CURRENT RESEARCH IN CANCER STEM CELLS
REGULATING PATHWAYS

There is growing evidence that illustrates that many
pathways classically connected with cancer may also

be regulators of normal stem cell development. The
pivotal signaling pathways of the “stem cell genes” viz.
Notch, Hedgehog, Wnt/B-Catenin, etc are involved in
the regulation of self-renewal, differentiation, and
survival of cancer stem cells. These key signaling
pathways, which may be deregulated in cancer stem
cells, offer great promise for future cancer therapies
and treatments.

The significant role of Wnt / B-Catenin pathway in
promoting drug resistant properties in mixed lineage
leukaemia (MLL) leukemic stem cells (LSCs) was first
demonstrated by Yeung et al. Their work showed that
by suppressing Wnt signaling in MLL, the leukemic
stem cells could be brought back to the pre-MLL like
stage which eventually would reduce growth of MLL
Leukemic cells [82].

Similar results on Cancer stem cells were seen by
regulating Hedgehog [83], Wnt [84] and Notch signaling
[85-87] pathways in T-Cell Acute Lymphoblastic
Leukemia (ALL), Chronic Myeloid Leukemia (CML),
Medulloblastoma, Pancreatic Cancer [88] and Lung
Adenocarcinoma [89]. Also, inhibition of Hedgehog
signaling pathways may lead to reduction in clonogenic
growth of CSCs in Multiple Myeloma, Colon Cancer
[90], Myeloid Leukemia [91], Breast Cancer [92-93] and
Multiple Myeloma [94].

FUTURE PERSPECTIVES

EMT has a crucial role in cancer radiation
resistance and various studies have indicated that
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induction of EMT enhances self-renewal and promotes
acquisition of stem cell like characteristics which is
further strengthened by expression of common markers
such as Snail, Twist 1 and CD44 [95]. Karhadkar et al.,
indicated that Hedgehog signaling pathway [96], Wnt
signaling pathway [97], Notch signaling pathway [98],
EGF receptor pathway [99] and p53 pathway [100] are
among the main pathways targeting EMT and CSC
maintenance in Prostate cancer [101]. Thus, any of the
above pathways can be studied as indicators for
carcinogenesis, and to facilitate pre-diagnosis of PCa
which still remains a challenge.

Molecular miRNA therapy is very crucial for
addressing oncogenesis linked with cancer stem cell
dysregulation during EMT in castration resistant
Prostate Cancer [102-103]. Hence, future researchers
should focus on investigating miRNAs role in cancer
stem cells self renewal pathways and also its potential
role in early diagnosis and cancer progression,
resistance and relapse.
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