Can Mutations in the BAP1 Gene be Detected by Immunohistochemistry in Hereditary Kidney Cancers?

Arunima Ghosh, Karlena Lara-Otero, Marston W. Linehan and Maria J. Merino*

Translational Surgical Pathology, Laboratory of Pathology and Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA

Abstract: *Background:* Hereditary renal cell carcinoma (RCC) constitutes about 5% of all RCCs. The most common and well studied syndromes include, VHL, HLRCC, BHD, Familial Oncocytoma, RCC Papillary Type 1, TSC, RCC associated with Succinate dehydrogenase B (SHDB) mutations and others. Several genes, including *VHL*, *MET*, *FLCN*, *FH* and genes encoding the succinate dehydrogenase (SDH) subunits B/C/D have been identified as causative. However, the genetic basis of a significant percentage of familial RCC, some with clear cell morphology remain unknown. *BAP1* (BRCA1 associated protein-1), a tumor suppressor gene that encodes a nuclear deubiquitinase, is inactivated in 15% of sporadic clear cell RCCs and its loss was associated with high tumor grade and poor prognosis. In this study, we investigated the possible role of this gene in the spectrum of RCC part of hereditary syndromes.

Materials and Methods: To elucidate the role of BAP1 in all the spectrum of hereditary RCC, we studied by IHC a panel of RCCs which covers the spectrum of kidney cancers and included 10 VHL tumors, 6 HLRCCs, 8 chromophobe, 5 Hereditary Papillary Type 1, 6 Oncocytomas, 3 BHD (hybrid), and 24 sporadic clear cell RCCs. To analyze the BAP1 expression in these tumors, formalin fixed paraffin embedded (FFPE) tissues were immunostained with mouse monoclonal anti-human BAP1 antibody (Clone C-4, Santa Cruz).

Results: We found that all the tumors except two showed positive nuclear staining for BAP1. The two negative cases that were negative for BAP1 were Clear cell type and belonged to two siblings. Molecular analysis in a prepublished study showed both patients harboring the p.L14H mutation.

Conclusion: Our study supports the hypothesis that *BAP1* mutations can play a role in hereditary syndromes predominantly in clear cell tumors. Staining for BAP1 should be done when there is no definite known mutation in a clear cell cancer but the patient gives history of familial kidney cancer. The two related patients who had similar mutations had aggressive, metastatic disease, which suggests that probably *BAP1* does play a role in hereditary RCC clear cell type.

Keywords: Hereditary kidney cancer, BAP1, mutation, immunohistochemistry.

INTRODUCTION

Hereditary kidney cancer accounts for more than 5% of the total number of RCC cases in the USA. Several genes have been already identified and the number continues to increase. These include the von Hippel Lindau (VHL), Birt Hogg Dube (BHD), Papillary type 1, Hereditary Leiomyomatosis and renal cell cancer (HLRCC), Succinate dehydrogenase-associated paraganglioma syndrome and Tuberous sclerosis complex.

VHL, is an autosomal dominant disease associated with lesions in the brain, spine, retina, pancreas, and kidneys. In the kidney, the tumors are bilateral, mutifocal, have a clear cell morphology and are frequently associated with renal cysts. The gene encoding for this syndrome was found to be located in chromosome 3p 25-26 [1-4] and named as von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase.

BHD patients have an autosomal dominant syndrome characterized by skin fibrofolliculomas, lung

cysts and kidney cancer [5, 6]. The kidney cancers observed in BHD syndrome could be oncocytomas, hybrid tumors or clear cell RCC. The gene for BHD, a tumor suppressor gene, maps to 17p12g11.2 and was identified and named Folliculin (FLCN) [7]. Hereditary RCC papillary Type I, is an autosomal dominant syndrome characterized by multifocal, bilateral papillary type tumors [8, 9]. Mutations of the MET gene on 7q31 have been associated with this condition. HLRCC, is an autosomal dominant disease where patients develop cutaneous and uterine leiomyomas and kidney cancer [10, 11]. The kidney tumors show a spectrum of papillary, tubulo-papillary, tubular and solid or mixed. The most important histologic feature of these neoplasms, which we believe to be the hallmark of the HLRCC tumors, is the presence of a characteristic large nucleus with a very prominent inclusion like orangiophilic or eosinophilic nucleolus, surrounded by a clear halo [12]. The gene in the HLRCC syndrome is linked to FH (fumarate hydratase), an enzyme that converts fumarate to malate in the Krebs cycle [13, 14]. The SDHB associated renal tumors cell, show a characteristic appearance that mimics oncocytomas [15-17]. Tuberous sclerosis (TSC) syndrome complex is autosomal dominant characterized by hamartoma like lesions in multiple organs including brain, kidney,

*Address correspondence to this author at the Translational Surgical Pathology, Laboratory of Pathology and Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA; Tel: 301-496-3326; Fax: 301-480-9488; E-mail: mjmerino@mail.nih.gov

ISSN: 1927-7210 / E-ISSN: 1927-7229/14

skin and lung. Patients with TSC2 mutations are more severely affected with kidney tumors.

BAP1 (BRCA1 ASSOCIATED PROTEIN 1 gene) is a tumor suppressor gene that encodes a nuclear deubiquitinase [18-20]. It functions as the classic twohit tumor suppressor gene and is somatically mutated in uveal melanoma and mesothelioma [21, 22]. Somatic mutations of BAP1 were identified through whole genome sequencing studies [23] in sporadic renal cell carcinomas, clear cell type. BAP1 was found to be inactivated in 15% of the sporadic tumors and BAP1 mutations were found to be associated with higher Fuhrman nuclear Grade and aggressive behavior. Germline mutations were identified in 1 of 83 families studied by Farley et al. with a novel missense mutation in BAP1 described [26]. In another study, of 32 unrelated individuals with familial RCC, no BAP1 mutations were found. In the same study, however, in 60 unrelated individuals, who were predisposed to uveal melanoma. cutaneous melanoma or mesothelioma identified 11 probands with deleterious BAP1 germline mutations. In 6 of 11 families, RCC was present, suggesting that BAP1 predisposes to RCC [24]. A multi-institutional study confirmed that RCC, cell type that stained positive clear immunohistochemical stains for BAP1 correlated with the mutation and also with higher Fuhrman nuclear grade, pT stage, tumor necrosis, sarcomatoid differentiation as well as poor oncologic outcomes and adverse clinical features in clear cell RCC [25].

We researched the BAP1 status in the spectrum of hereditary RCCs to investigate the possibility of identification of patients with this mutation.

MATERIAL AND METHODS

Patient Population

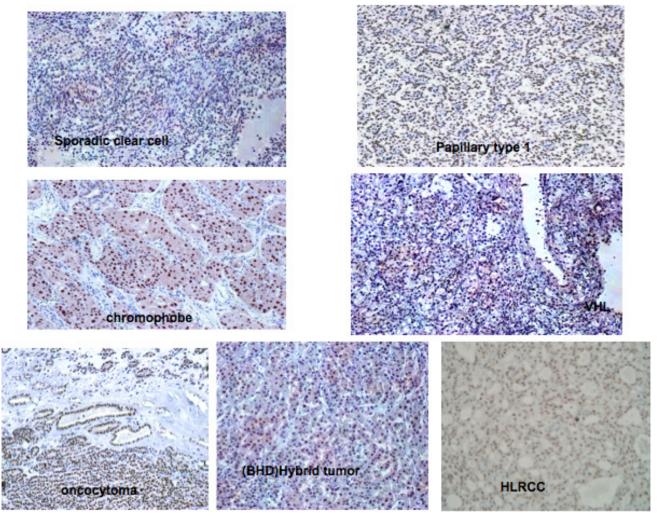
Patients were accepted for enrollment in an IRB approved protocol of the UOB, NCI. This study included tissue samples from 62 patients, who underwent partial or radical nephrectomy in the last 10 years. All H&E slides were obtained and reviewed. Tumors from all the different varieties of hereditary RCC, were studied including 10 VHL tumors, 6 HLRCCs, 8 chromophobe, 5 Hereditary Papillary Type 1, 6 Oncocytomas, 3 BHD (hybrid), and 24 sporadic clear cell RCCs.

Immunohistochemistry

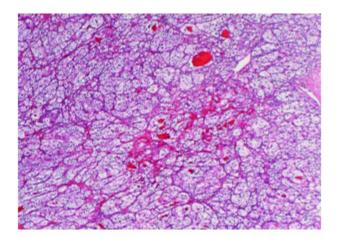
Five micron formalin-fixed paraffin-embedded sections were deparaffinized and blocked with methanol-30% H₂O₂. After antigen retrieval by boiling in citrate buffer, slides were incubated with monoclonal anti-BAP1 antibody (C-4; Santa Cruz Biotechnology Inc, Dallas, Texas) diluted 1/150. Then, slides were immunostained with avidin-biotin-peroxidase complex and developed with diaminobenzidine. hematoxylin was used to counterstain the slides. Nonimmune mouse immunoglobulin was used as a negative control. Expression was evaluated as positive or negative. Staining was considered positive when more than 10% of the nuclei showed immunoreaction. Results were scored by a pathologist blinded to the clinical data.

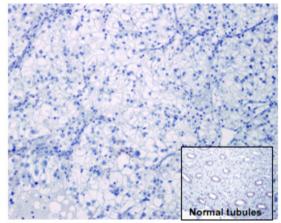
RESULTS

Clinical and Histological Characteristics


The distribution of tumor characteristics were as shown in Table 1. A group of 24 sporadic RCC, clear cell type were chosen to compare to the hereditary group. Median age in this group was 50 years. Most of these were clear cell type with Fuhrman nuclear Grade 2 (50%) while a few were Grade 3 and 4 and presented with unilateral tumors. Among the clear cell RCC in VHL patients (median age 54) most had multiple, bilateral tumors and had undergone several partial nephrectomies or tumorectomies, most were Fuhrman nuclear Grade 2, some were Grade 3. Patients with oncocytomas, had a median age of 52, tumors were both unilateral and bilateral. Patients with papillary type 1 tumors, presented around age 56 and the tumors were mostly bilateral. For patients with chromophobe tumors, median age was 48, and 2 of 8 tumors had sarcomatoid differentiation.

BAP1 Associations


BAP1 IHC was positive in all hereditary tumor categories (Figure 1) cases except 2 (Figure 2). One patient, negative for BAP1 by immunohistochemistry, had recurrent kidney cancers, was surgically operated several times and diagnosed as clear cell type renal cell carcinoma, Fuhrman nuclear grade 2 and at times, Grade 3. In the same family, a sibling was diagnosed with kidney cancer too. One of the BAP1 negative tumors shown in Figure 2, is from one of the siblings. These cases were previously published and found to harbor the p.L14H missense mutation as reported before [26]. It is possible that this point mutation (Leucine to Histidine), has changed the protein conformation or protein folding in which case the antibody could not detect the protein.


Table 1:

Histological Type	Number of Cases	Median Age	Range of Size	Grade if applicable	Laterality	Sarcomatoid differentiation	BAP 1 expression	
			Of tumors				POS	NEG
Oncocytoma	6	52	3.5-6.5cm	NA	Bilateral and unilateral	0	6	
VHL	10	54	0.5-5.4cm	Mostly G2, some 3	Multiple, bilateral	0	10	
Clear Cell RCC	24	50	0.3-6.5cm	16 cases G2 3 cases G3 3 cases mixed 2 and 3 2 cases G4	Mostly unilateral, 2 bilateral.	1	22	2
Papillary Type 1	5	53	1.2-6.0cm	NA	2 bilateral 1 unilateral	0	5	0
Chromophobe	8	48	1.2-15 cm	NA	2 bilateral	2	8	0
HLRCC	6	52	0.4-2.0cm	High	2 unilateral	0	6	
BHD (Hybrid)	3	50	0.6-5.3cm	low	bilateral	0	3	0

Figure 1: Immunohistochemical stains for BAP1 in all the different types of familial kidney cancer patients reviewed. The figure shows that BAP1 nuclear stain was positive in all the different tumor types.

Clear cell RCC

Tumor negative for BAP1 staining-sibling

Figure 2: A H&E and corresponding BAP1 immunostain in a kidney tumor where the siblings had a familial syndrome and both stained negative for BAP1 and harbored the mutation.

DISCUSSION

Here we provide a detailed description of the expression of BAP1 in the spectrum of hereditary renal cell carcinomas seen in our institution. Our results indicate that *BAP1* may not play a significant role in the hereditary kidney tumors with morphologies other than clear cell cancer but supports the theory that *BAP1* mutation and loss of expression may define a new class of renal cell cancer syndrome [23].

BAP1 mutations have been reported to be associated with disease progression and aggressive clinicopathological features in sporadic renal cell carcinoma [25]. In another multi-institutional study, which was based on immmunohistochemistry, BAP1 negative tumors significantly correlated with adverse pathologic features and worse outcomes in clear cell renal cell carcinoma [27]. In addition, a novel variant (c.41T>A; p.L14H) of *BAP1* mutation has previously been identified in a family with clear cell renal cell carcinoma, with high Fuhrman nuclear grade and thus suggested *BAP1* as a predisposing gene in a familial setting [26].

In our study, BAP 1 expression was positive in all the different types of hereditary kidney cancer types we studied, which included VHL, BHD (hybrid), chromophobe, Papillay Type I, and HLRCC tumors. As a comparison, 24 sporadic RCC, clear cell type tumors were tested as control.

Two tumors stained negatively for BAP1, positive staining in the adjacent normal nuclei served as internal control. These 2 patients by mutation analysis,

had the p.L14H missense mutation as reported before [26]. This point mutation (Leucine to Histidine), possibly changes the protein conformation or protein folding in which case the antibody may not detect the protein. Also if this mutation made a truncated protein, the antibody may still not recognize the protein. It is also possible that this protein may be degraded or inactivated much faster so there is no detectable protein in the fixed tissue sample. We need to validate this by more protein biochemistry experiments which are currently being done in the laboratory.

Germline *BAP1* mutations have been reported to predispose to several additional cancers including uveal and cutaneous melanoma and mesothelioma, lung cancers, meningiomas and mesotheliomas [28-31]. However, in the one BAP1 kidney cancer family that was identified here, there was no evidence of other malignancies.

Recent studies have reported several mutations in chromosome 3p locus, including BAP1, SETD2 and PBRM1. As the TCGA network suggested that PMBR1 mutations (30-34%) most probably play an important role in tumor initiation, while BAP1 and SETD2 mutations (6-12%) are associated with worse cancer specific survival [32]. In a different study, BAP1 and PBRM1 mutations anti correlated in tumors and combined loss of BAP1 and PBRM1 in a few tumors was associated with rhabdoid features [23].

In conclusion, BAP1 does not seem to play a role in the well known/characterized familial kidney cancer syndromes. However, BAP1 may constitute a new genre of hereditary kidney cancer syndrome which have a clear cell morphology distinct of VHL and similar to sporadic clear cell, but that can occur in families. From our first family identified here at our institution. the BAP1 cancers are bilateral, multifocal, with multiple renal cysts; they lack the germline VHL mutations, and other VHL findings such as hemangioblastomas and in other organs such as pancreatic neuroendocrine tumors and pheochromocytomas [2]. There are still families with malignant tumors that do not have the classical mutations of known hereditary kidney cancer syndromes and they may harbor the BAP1 mutation. While right now, the clinical care is resection/partial nephrectomy, however, BAP1 has gained recognition as to predispose to a familial tumor. This necessitates the timely screening of family members and this we feel is of great significance. Staining for BAP1 followed by further confirmation with other tests may help recognize and classify patients better not only for clinical trials but for establishment of proper therapies.

REFERENCES

- [1] Richards FM, Crossey PA, Phipps ME, Foster K, Latif F, Evans G, et al. Detailed mapping of germline deletions of the von Hippel-Lindau disease tumour suppressor gene. Hum Mol Genet 1994; 3(4): 595-8. http://dx.doi.org/10.1093/hmg/3.4.595
- [2] Richards FM, Maher ER, Latif F, Phipps ME, Tory K, Lush M, et al. Detailed genetic mapping of the von Hippel-Lindau disease tumour suppressor gene. J Med Genet 1993; 30(2): 104-7. http://dx.doi.org/10.1136/jmg.30.2.104
- [3] Richards FM, Phipps ME, Latif F, Yao M, Crossey PA, Foster K, et al. Mapping the Von Hippel-Lindau disease tumour suppressor gene: identification of germline deletions by pulsed field gel electrophoresis. Hum Mol Genet 1993; 2(7): 879-82.
 - http://dx.doi.org/10.1093/hmg/2.7.879
- [4] Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993; 260(5112): 1317-20. http://dx.doi.org/10.1126/science.8493574
- [5] Khoo SK, Bradley M, Wong FK, Hedblad MA, Nordenskjold M, Teh BT. Birt-Hogg-Dube syndrome: mapping of a novel hereditary neoplasia gene to chromosome 17p12-q11.2. Oncogene 2001; 20(37): 5239-42. http://dx.doi.org/10.1038/sj.onc.1204703
- [6] Schmidt LS, Warren MB, Nickerson ML, Weirich G, Matrosova V, Toro JR, et al. Birt-Hogg-Dube syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am J Hum Genet 2001; 69(4): 876-82. http://dx.doi.org/10.1086/323744
- [7] Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2002; 2(2): 157-64. http://dx.doi.org/10.1016/S1535-6108(02)00104-6
- [8] Zbar B, Glenn G, Lubensky I, Choyke P, Walther MM, Magnusson G, et al. Hereditary papillary renal cell

- carcinoma: clinical studies in 10 families. J Urol 1995; 153(3 Pt 2): 907-12.
- [9] Zbar B, Tory K, Merino M, Schmidt L, Glenn G, Choyke P, et al. Hereditary papillary renal cell carcinoma. J Urol 1994; 151(3): 561-6.
- [10] Toro JR, Nickerson ML, Wei MH, Warren MB, Glenn GM, Turner ML, et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 2003; 73(1): 95-106. http://dx.doi.org/10.1086/376435
- [11] Alam NA, Rowan AJ, Wortham NC, Pollard PJ, Mitchell M, Tyrer JP, et al. Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum Mol Genet 2003; 12(11): 1241-52. http://dx.doi.org/10.1093/hmg/ddq148
- [12] Merino MJ, Torres-Cabala C, Pinto P, Linehan WM. The morphologic spectrum of kidney tumors in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Am J Surg Pathol 2007; 31(10): 1578-85. http://dx.doi.org/10.1097/PAS.0b013e31804375b8
- [13] Wei MH, Toure O, Glenn GM, Pithukpakorn M, Neckers L, Stolle C, et al. Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet 2006; 43(1): 18-27. http://dx.doi.org/10.1136/jmg.2005.033506
- [14] Smit DL, Mensenkamp AR, Badeloe S, Breuning MH, Simon ME, van Spaendonck KY, et al. Hereditary leiomyomatosis and renal cell cancer in families referred for fumarate hydratase germline mutation analysis. Clin Genet 2011; 79(1): 49-59. http://dx.doi.org/10.1111/j.1399-0004.2010.01486.x
- [15] Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D, Latif F, et al. Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 2008; 100(17): 1260-2. http://dx.doi.org/10.1093/jnci/djn254
- [16] Vanharanta S, Buchta M, McWhinney SR, Virta SK, Peczkowska M, Morrison CD, et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHBassociated heritable paraganglioma. Am J Hum Genet 2004; 74(1): 153-9. http://dx.doi.org/10.1086/381054
- [17] Morris MR, Maina E, Morgan NV, Gentle D, Astuti D, Moch H, et al. Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma. J Clin Pathol 2004; 57(7): 706-11. http://dx.doi.org/10.1136/jcp.2003.011767
- [18] Eletr ZM, Wilkinson KD. An emerging model for BAP1's role in regulating cell cycle progression. Cell Biochem Biophys 2011; 60(1-2): 3-11. http://dx.doi.org/10.1007/s12013-011-9184-6
- [19] Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1mediated cell growth suppression. Oncogene 1998; 16(9): 1097-112. http://dx.doi.org/10.1038/sj.onc.1201861
- [20] Ventii KH, Devi NS, Friedrich KL, Chernova TA, Tighiouart M, Van Meir EG, et al. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res 2008; 68(17): 6953-62. http://dx.doi.org/10.1158/0008-5472.CAN-08-0365
- [21] Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 2011; 43(7): 668-72. http://dx.doi.org/10.1038/ng.855

- [22] Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010; 330(6009): 1410-3. http://dx.doi.org/10.1126/science.1194472
- [23] Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, Leng N, Pavia-Jimenez A, Wang S, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 2012; 44(7): 751-9. http://dx.doi.org/10.1038/ng.2323
- [24] Popova T, Hebert L, Jacquemin V, Gad S, Caux-Moncoutier V, Dubois-d'Enghien C, et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet 2013; 92(6): 974-80. http://dx.doi.org/10.1016/j.ajhq.2013.04.012
- [25] Kapur P, Pena-Llopis S, Christie A, Zhrebker L, Pavia-Jimenez A, Rathmell WK, et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol 2013; 14(2): 159-67. http://dx.doi.org/10.1016/S1470-2045(12)70584-3
- [26] Farley MN, Schmidt LS, Mester JL, Pena-Llopis S, Pavia-Jimenez A, Christie A, et al. A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol Cancer Res 2013; 11(9): 1061-71. http://dx.doi.org/10.1158/1541-7786.MCR-13-0111
- [27] Kapur P, Christie A, Raman JD, Then MT, Nuhn P, Buchner A, et al. BAP1 immunohistochemistry predicts outcomes in a multi-institutional cohort with clear cell renal cell carcinoma. J Urol 2014; 191(3): 603-10. http://dx.doi.org/10.1016/j.juro.2013.09.041

- [28] Abdel-Rahman MH, Pilarski R, Cebulla CM, Massengill JB, Christopher BN, Boru G, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet 2011; 48(12): 856-9. http://dx.doi.org/10.1136/jmedgenet-2011-100156
- [29] Aoude LG, Vajdic CM, Kricker A, Armstrong B, Hayward NK. Prevalence of germline BAP1 mutation in a population-based sample of uveal melanoma cases. Pigment Cell Melanoma Res 2013; 26(2): 278-9. http://dx.doi.org/10.1111/pcmr.12046
- [30] Njauw CN, Kim I, Piris A, Gabree M, Taylor M, Lane AM, et al. Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS One 2012; 7(4): e35295. http://dx.doi.org/10.1371/journal.pone.0035295
- [31] Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 2011; 43(10): 1022-5. http://dx.doi.org/10.1038/ng.912
- [32] Hakimi AA, Ostrovnaya I, Reva B, Schultz N, Chen YB, Gonen M, et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res 2013; 19(12): 3259-67. http://dx.doi.org/10.1158/1078-0432.CCR-12-3886

Received on 29-04-2014 Accepted on 10-06-2014 Published on 12-08-2014

http://dx.doi.org/10.6000/1927-7229.2014.03.03.3

© 2014 Ghosh et al.; Licensee Lifescience Global.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.